Reference Manual of the Programming Language Lua 2.5

Roberto Ierusalimschy Luiz Henrique de Figueiredo Waldemar Celes

lua@icad.puc-rio.br

Te(Graf — Departamento de Informdtica — PUC-Rio

Date: 1996/11/18 14:27:42

Abstract

Lua is an extension programming language designed to be used as a configuration language
for any program that needs one. This document describes version 2.5 of the Lua programming
language and the API that allows interaction between Lua programs and their host C programs.
The document also presents some examples of using the main features of the system.

Sumario

Lua é uma linguagem de extensdo projetada para ser usada como linguagem de configuragao em
qualquer programa que precise de uma. Este documento descreve a versao 2.5 da linguagem de
programacao Lua e a Interface de Programacdo (API) que permite a interagao entre programas
Lua e programas C hospedeiros. O documento também apresenta alguns exemplos de uso das
principais caracteristicas do sistema.

1 Introduction

Lua is an extension programming language designed to support general procedural programming
features with data description facilities. It is intended to be used as a configuration language for
any program that needs one. Lua has been designed and implemented by W. Celes, L. H. de
Figueiredo and R. Ierusalimschy.

Lua is implemented as a library, written in C. Being an extension language, Lua has no notion of
a “main” program: it only works embedded in a host client, called the embedding program. This host
program can invoke functions to execute a piece of code in Lua, can write and read Lua variables,
and can register C functions to be called by Lua code. Through the use of C functions, Lua can be
augmented to cope with rather different domains, thus creating customized programming languages
sharing a syntactical framework.

Lua is free-distribution software, and provided as usual with no guarantees. The implementation
described in this manual is available at the following URL’s:

http://www.inf .puc-rio.br/ roberto/lua.html
ftp://ftp.icad.puc-rio.br/pub/lua/lua.tar.gz

2 Environment and Chunks

All statements in Lua are executed in a global environment. This environment, which keeps all global
variables and functions, is initialized at the beginning of the embedding program and persists until
its end.

The global environment can be manipulated by Lua code or by the embedding program, which
can read and write global variables using functions in the library that implements Lua.

Global variables do not need declaration. Any variable is assumed to be global unless explicitly
declared local (see Section 4.4.5). Before the first assignment, the value of a global variable is nil.

The unit of execution of Lua is called a chunk. The syntax' for chunks is:

chunk — {statement | function} [ret]

A chunk may contain statements and function definitions, and may be in a file or in a string inside
the host program. A chunk may optionally ends with a return statement (see Section 4.4.3). When
a chunk is executed, first all its functions and statements are compiled, then the statements are
executed in sequential order. All modifications a chunk effects on the global environment persist
after its end. Those include modifications to global variables and definitions of new functions?.
Chunks may be pre-compiled; see program luac for details. Text files with chunks and their
binary pre-compiled forms are interchangeable. Lua automatically detects the file type and acts

accordingly.

3 Types

Lua is a dynamically typed language. Variables do not have types; only values do. All values carry
their own type. Therefore, there are no type definitions in the language.

There are seven basic types in Lua: nil, number, string, function, CFunction, userdata, and
table. Nil is the type of the value nil, whose main property is to be different from any other value.
Number represents real (floating point) numbers, while string has the usual meaning.

Functions are considered first-class values in Lua. This means that functions can be stored
in variables, passed as arguments to other functions and returned as results. When a function is
defined in Lua, its body is compiled and stored in a given variable. Lua can call (and manipulate)
functions written in Lua and functions written in C; the latter have type CFunction.

The type userdata is provided to allow arbitrary C pointers to be stored in Lua variables. It
corresponds to void* and has no pre-defined operations in Lua, besides assignment and equality
test. However, by using fallbacks, the programmer may define operations for userdata values; see
Section 4.7.

The type table implements associative arrays, that is, arrays that can be indexed not only with
numbers, but with any value (except nil). Therefore, this type may be used not only to represent
ordinary arrays, but also symbol tables, sets, records, etc. To represent records, Lua uses the field
name as an index. The language supports this representation by providing a.name as syntactic
sugar for a["name"]. Tables may also carry methods. Because functions are first class values,
table fields may contain functions. The form t:f(x) is syntactic sugar for t.f (t,x), which calls
the method f from the table t passing itself as the first parameter.

It is important to notice that tables are objects, and not values. Variables cannot contain tables,
only references to them. Assignment, parameter passing and returns always manipulate references

! As usual, {a} means 0 or more a’s, [a] means an optional a¢ and {a}" means one or more a’s.
2 Actually, a function definition is an assignment to a global variable; see Section 3.

to tables, and do not imply any kind of copy. Moreover, tables must be explicitly created before
used (see Section 4.5.7).

4 The Language
This section describes the lexis, the syntax and the semantics of Lua.

4.1 Lexical Conventions

Lua is a case sensitive language. Identifiers can be any string of letters, digits, and underscores,
not beginning with a digit. The following words are reserved, and cannot be used as identifiers:

and do else elseif
end function if local
nil not or repeat
return then until while

The following strings denote other tokens:

"= K= >= < > = = . + - x /[
Ao C > Ly L 1 5

Literal strings can be delimited by matching single or double quotes, and can contain the
C-like escape sequences ’\n’, >\t’ and ’\r’. Literal strings can also be delimited by matching
[[... 11. Literals in this bracketed form may run for several lines, may contain nested [[... 1]
pairs, and do not interpret escape sequences.

Comments start anywhere outside a string with a double hyphen (--) and run until the end of
the line. Moreover, if the first line of a chunk file starts with #, this line is skipped?.

Numerical constants may be written with an optional decimal part, and an optional decimal
exponent. Examples of valid numerical constants are:

4 4.0 0.4 4.57e-3 0.3e12

4.2 Coercion

Lua provides some automatic conversions. Any arithmetic operation applied to a string tries to
convert that string to a number, following the usual rules. Conversely, whenever a number is used
when a string is expected, that number is converted to a string, according to the following rule: if
the number is an integer, it is written without exponent or decimal point; otherwise, it is formatted
following the %g conversion specification of the printf function in the standard C library.

4.3 Adjustment

Functions in Lua can return many values. Because there are no type declarations, the system does
not know how many values a function will return, or how many parameters it needs. Therefore,
sometimes, a list of values must be adjusted, at run time, to a given length. If there are more values
than are needed, then the last values are thrown away. If there are more needs than values, then
the list is extended with as many nil’s as needed. Adjustment occurs in multiple assignment and
function calls.

3This facility allows the use of Lua as a script interpreter in Unix systems.

4.4 Statements

Lua supports an almost conventional set of statements. The conventional commands include as-
signment, control structures and procedure calls. Non-conventional commands include table con-
structors (Section 4.5.7), and local variable declarations (Section 4.4.5).

4.4.1 Blocks

A block is a list of statements, which is executed sequentially. Any statement can be optionally
followed by a semicolon:

block — {stat sc} [ret]
sc. =[]
For syntactic reasons, a return statement can only be written as the last statement of a block.
This restriction also avoids some “statement not reached” errors.

4.4.2 Assignment

The language allows multiple assignment. Therefore, the syntax defines a list of variables on the
left side, and a list of expressions on the right side. Both lists have their elements separated by
commas:
stat — warlistl =" explist]
varlistl — war {’, var}

This statement first evaluates all values on the right side and eventual indices on the left side, and
then makes the assignments. Therefore, it can be used to exchange two values, as in

X, Y=Y, X

Before the assignment, the list of values is adjusted to the length of the list of variables (see
Section 4.3).
A single name can denote a global or a local variable, or a formal parameter:

var — name

Square brackets are used to index a table:

var — war’[

expl]
If var results in a table value, the field indexed by the expression value gets the assigned value.
Otherwise, the fallback settable is called, with three parameters: the value of var, the value of
expression, and the value being assigned to it; see Section 4.7.

The syntax var.NAME is just syntactic sugar for var ["NAME"].

?

var — var’. name

4.4.3 Control Structures

The condition expression of a control structure can return any value. All values different from nil
are considered true; nil is considered false. if’s, while’s and repeat’s have the usual meaning.

stat — while expl do block end

| repeat block until ezpl
| if exp! then block {elseif } [else block] end
elseif — elseif expl then block

A return is used to return values from a function or a chunk. Because they may return more
than one value, the syntax for a return statement is:

ret — return ezplist [sc]

4.4.4 Function Calls as Statements

Because of possible side-effects, function calls can be executed as statements:
stat — functioncall

Eventual returned values are thrown away. Function calls are explained in Section 4.5.8.

4.4.5 Local Declarations
Local variables can be declared anywhere inside a block. Their scope begins after the declaration
and lasts until the end of the block. The declaration may include an initial assignment:

stat — local declist [init]
declist — name {’,) name}
it — =" explistl
If present, an initial assignment has the same semantics of a multiple assignment. Otherwise, all
variables are initialized with nil.

4.5 Expressions
4.5.1 Simple Expressions

Simple expressions are:

exp — ("exp’)
ezp — nil

erp — ’'number’
exp — ’literal’
exp — wvar

Numbers (numerical constants) and string literals are explained in Section 4.1. Variables are
explained in Section 4.4.2.

4.5.2 Arithmetic Operators

Lua supports the usual arithmetic operators. These operators are the binary +, -, *, / and ~
(exponentiation), and the unary -. If the operands are numbers, or strings that can be converted
to numbers, according to the rules given in Section 4.2, then all operations but exponentiation have
the usual meaning. Otherwise, the fallback “arith” is called (see Section 4.7). An exponentiation
always calls this fallback. The standard mathematical library redefines this fallback, giving the
expected meaning to exponentiation (see Section 6.3).

4.5.3 Relational Operators

Lua provides the following relational operators:

< > <= >= Y= ==

All these return nil as false and a value different from nil (actually the number 1) as true.

Equality first compares the types of its operands. If they are different, then the result is nil.
Otherwise, their values are compared. Numbers and strings are compared in the usual way. Tables,
CFunctions, and functions are compared by reference, that is, two tables are considered equal only
if they are the same table. The operator ~= is exactly the negation of equality (==).

The other operators work as follows. If both arguments are numbers, then they are compared
as such. Otherwise, if both arguments can be converted to strings, their values are compared using
lexicographical order. Otherwise, the “order” fallback is called (see Section 4.7).

4.5.4 Logical Operators

Like control structures, all logical operators consider nil as false and anything else as true. The
logical operators are:

and or not

The operator and returns nil if its first argument is nil; otherwise it returns its second argument.
The operator or returns its first argument if it is different from nil; otherwise it returns its second
argument. Both and and or use short-cut evaluation, that is, the second operand is evaluated only
if necessary.

4.5.5 Concatenation

Lua offers a string concatenation operator, denoted by “..”. If operands are strings or numbers,
then they are converted to strings according to the rules in Section 4.2. Otherwise, the fallback
“concat” is called (see Section 4.7).

4.5.6 Precedence

Operator precedence follows the table below, from the lower to the higher priority:

and or

not - (unary)

-~

~

All binary operators are left associative, except for ~ (exponentiation), which is right associative.

4.5.7 Table Constructors

Table constructors are expressions that create tables; every time a constructor is evaluated, a new
table is created. Constructors can be used to create empty tables, or to create a table and initialize
some fields.

The general syntax for constructors is:

tableconstructor — {’ fieldlist '}’
fieldlist — lfieldlist | ffieldlist | Ifieldlist’; ffieldlist
lfieldlist — [lfieldlist1]
fheldlist — [ffieldlist1]

The form Ifieldlist1 is used to initialize lists.
lfieldlist1 — exp {°, exp})]

The expressions in the list are assigned to consecutive numerical indexes, starting with 1. For
example:

a = {“Vi“, “V2“, 34}
is roughly equivalent to:

temp = {}
temp[1] = "v1"
temp[2] = "v2"
temp[3] = 34
a = temp

The next form initializes named fields in a table:

fieldlist1 — ffield {*, ffield} [',]

ffield — name’=" exp

For example:
a={x=1, y=3}

is roughly equivalent to:

temp = {}

temp.x = 1 -- or temp["x"] =1
temp.y = 3 -- or temp["y"] =
a = temp

4.5.8 Function Calls

A function call has the following syntax:
functioncall — wvar realParams

Here, var can be any variable (global, local, indexed, etc). If its value has type function or
CFunction, then this function is called. Otherwise, the “function” fallback is called, having as first
parameter the value of var, and then the original call parameters.
The form:
9’

functioncall — wvar’.’ name realParams

can be used to call “methods”. A call var:name(...) is syntactic sugar for

var.name(var, ...)

except that var is evaluated only once.

realParams — (' [explistl])
realParams — tableconstructor
explistl — expl {’) expl}
All argument expressions are evaluated before the call; then the list of arguments is adjusted to
the length of the list of parameters (see Section 4.3); finally, this list is assigned to the formal
parameters. A call of the form f{...} is syntactic sugar for £({...}), that is, the parameter list
is a single new table.

Because a function can return any number of results (see Section 4.4.3), the number of results
must be adjusted before used. If the function is called as a statement (see Section 4.4.4), its return
list is adjusted to 0. If the function is called in a place that needs a single value (syntactically
denoted by the non-terminal exp1), then its return list is adjusted to 1. If the function is called
in a place that can hold many values (syntactically denoted by the non-terminal exp), then no
adjustment is made.

4.6 Function Definitions
Functions in Lua can be defined anywhere in the global level of a chunk. The syntax for function
definition is:

function — function var (" [parlist1])’ block end

When Lua pre-compiles a chunk, all its function bodies are pre-compiled, too. Then, when Lua
“executes” the function definition, its body is stored, with type function, into the variable var.
Parameters act as local variables, initialized with the argument values.

parlist] — name {’)) name}

Results are returned using the return statement (see Section 4.4.3). If control reaches the end
of a function without a return instruction, then the function returns with no results.

There is a special syntax for defining methods, that is, functions that have an extra parameter
self.

function — function var’’

name ’(’ [parlist1] °)’ block end
Thus, a declaration like

function v:f (...)

end
is equivalent to

function v.f (self, ...)

end

that is, the function gets an extra formal parameter called self. Notice that the variable v must
have been previously initialized with a table value.

4.7 Fallbacks

Lua provides a powerful mechanism to extend its semantics, called fallbacks. A fallback is a pro-
grammer defined function that is called whenever Lua does not know how to proceed.
Lua supports the following fallbacks, identified by the given strings:

“arith”: called when an arithmetic operation is applied to non numerical operands, or when the
binary ~ operation is called. It receives three arguments: the two operands (the second one
is nil when the operation is unary minus) and one of the following strings describing the
offended operator:

add sub mul div pow unm

Its return value is the final result of the arithmetic operation. The default handler issues an
error.

“order”: called when an order comparison is applied to non numerical or non string operands. It
receives three arguments: the two operands and one of the following strings describing the
offended operator:

1t gt le ge

Its return value is the final result of the comparison operation. The default handler issues an
error.

“concat”: called when a concatenation is applied to non string operands. It receives the two
operands as arguments. Its return value is the final result of the concatenation operation.
The default handler issues an error.

“index”: called when Lua tries to retrieve the value of an index not present in a table. It receives
as arguments the table and the index. Its return value is the final result of the indexing
operation. The default handler returns nil.

“getglobal”: called when Lua tries to retrieve the value of a global variable which has a nil value
(or which has not been initialized). It receives as argument the name of the variable. Its
return value is the final result of the expression. The default handler returns nil.

“gettable”: called when Lua tries to index a non table value. It receives as arguments the non
table value and the index. Its return value is the final result of the indexing operation. The
default handler issues an error.

“settable”: called when Lua tries to assign indexed a non table value. It receives as arguments
the non table value, the index, and the assigned value. The default handler issues an error.

“function”: called when Lua tries to call a non function value. It receives as arguments the non
function value and the arguments given in the original call. Its return values are the final
results of the call operation. The default handler issues an error.

“gc”: called during garbage collection. It receives as argument the table being collected. After

each run of the collector this function is called with argument nil. Because this function
operates during garbage collection, it must be used with great care, and programmers should
avoid the creation of new objects (tables or strings) in this function. The default handler
does nothing.

“error”: called when an error occurs. It receives as argument a string describing the error. The
default handler prints the message on the standard error output.

The function setfallback is used to change a fallback handler. Its first argument is the name
of a fallback condition, and the second argument is the new function to be called. It returns the
old handler function for the given fallback.

Section 8.6 shows an example of the use of fallbacks.

4.8 Error Handling

Because Lua is an extension language, all Lua actions start from C code calling a function from
the Lua library. Whenever an error occurs during Lua compilation or execution, an “error”
fallback function is called, and then the corresponding function from the library (lua_dofile,
lua_dostring, lua_call, or lua_callfunction) is terminated returning an error condition.

The only argument to the “error” fallback function is a string describing the error. The standard
I/0O library redefines this fallback, using the debug facilities (see Section 7), in order to print some
extra information, like the call stack. For more information about an error, the Lua program can
include the compilation pragma $debug. This pragma must be written in a line by itself. When
an error occurs in a program compiled with this option, the error routine is able to print also the
lines where the calls (and the error) were made. If needed, it is possible to change the “error”
fallback handler (see Section 4.7).

Lua code can explicitly generate an error by calling the built-in function error (see Section 6.1).

5 The Application Program Interface

This section describes the API for Lua, that is, the set of C functions available to the host program
to communicate with the library. The API functions can be classified in the following categories:

1. executing Lua code;

2. converting values between C and Lua;

3. manipulating (reading and writing) Lua objects;
4. calling Lua functions;

5. C functions to be called by Lua;

6. references to Lua Objects.

All API functions are declared in the header file 1ua.h.

5.1 Executing Lua Code

A host program can execute Lua chunks written in a file or in a string, using the following functions:

int lua_dofile (char *filename);
int lua_dostring (char *string);

10

Both functions return an error code: 0, in case of success; non zero, in case of errors. More specifi-
cally, lua_dofile returns 2 if for any reason it could not open the file. The function lua_dofile,
if called with argument NULL (0), executes the stdin stream. Function lua_dofile is also able to
execute pre-compiled chunks. It automatically detects whether the file is text or binary, and loads
it accordingly (see program luac).

5.2 Converting Values between C and Lua

Because Lua has no static type system, all values passed between Lua and C have type lua_0bject,
which works like an abstract type in C that can hold any Lua value. Values of type lua_0bject have
no meaning outside Lua; for instance, the comparisson of two lua_0bject’s is of no significance.

Because Lua has automatic memory management and garbage collection, a lua_0bject has a
limited scope, and is only valid inside the block where it was created. A C function called from
Lua is a block, and its parameters are valid only until its end. A good programming practice is to
convert Lua objects to C values as soon as they are available, and never to store lua_0Objects in
C global variables.

When C code calls Lua repeatedly, as in a loop, objects returned by these calls accumulate, and
may create a memory problem. To avoid this, nested blocks can be defined with the functions:

void lua_beginblock (void);
void lua_endblock (void);

After the end of the block, all lua_Object’s created inside it are released.

To check the type of a 1lua_0Object, the following function is available:
int lua_type (lua_Object object);

plus the following macros and functions:

int lua_isnil (lua_Object object);
int lua_isnumber (lua_Object object);
int lua_isstring (lua_Object object);
int lua_istable (lua_Object object);
int lua_isfunction (lua_Object object);
int lua_iscfunction (lua_Object object);
int lua_isuserdata (lua_Object object);

All macros return 1 if the object is compatible with the given type, and 0 otherwise. The function
lua_isnumber accepts numbers and numerical strings, lua_isstring accepts strings and numbers
(see Section 4.2), and lua_isfunction accepts Lua and C functions. The function lua_type can
be used to distinguish between different kinds of user data.

To translate a value from type lua_0Object to a specific C type, the programmer can use:

double lua_getnumber (lua_Object object);
char *lua_getstring (lua_Object object);
lua_CFunction lua_getcfunction (lua_Object object);
void xlua_getuserdata (lua_Object object);

lua_getnumber converts a lua_Object to a float. This 1lua_0bject must be a number or a string
convertible to number (see Section 4.2); otherwise, the function returns 0.

11

lua_getstring converts a lua_0bject to a string (char *). This lua_0Object must be a string
or a number; otherwise, the function returns 0 (the null pointer). This function does not create a
new string, but returns a pointer to a string inside the Lua environment. Because Lua has garbage
collection, there is no guarantee that such pointer will be valid after the block ends.

lua_getcfunction converts a lua_Object to a C function. This lua_Object must have type
CPFunction; otherwise, the function returns 0 (the null pointer). The type lua_CFunction is ex-
plained in Section 5.5.

lua_getuserdata converts a lua_0Object to void*. This lua_Object must have type userdata;
otherwise, the function returns 0 (the null pointer).

The reverse process, that is, passing a specific C value to Lua, is done by using the following
functions:

void lua_pushnumber (double n);

void lua_pushstring (char xs);

void lua_pushcfunction (lua_CFunction f);
void lua_pushusertag (void *u, int tag);

plus the macro:
void lua_pushuserdata (void *u);

All of them receive a C value, convert it to a corresponding lua_Object, and leave the result on
the top of the Lua stack, where it can be assigned to a Lua variable, passed as parameter to a Lua
function, etc.

User data can have different tags, whose semantics are defined by the host program. Any
positive integer can be used to tag a user datum. When a user datum is retrieved, the function
lua_type can be used to get its tag.

To complete the set, the value nil or a lua_0Object can also be pushed onto the stack, with:

void lua_pushnil (void);
void lua_pushobject (lua_Object object);

5.3 Manipulating Lua Objects
To read the value of any global Lua variable, one uses the function:
lua_Object lua_getglobal (char *varname) ;

As in Lua, if the value of the global is nil, then the “getglobal” fallback is called.
To store a value previously pushed onto the stack in a global variable, there is the function:

void lua_storeglobal (char *varname) ;
Tables can also be manipulated via the API. The function
lua_0Object lua_getsubscript (void);

expects on the stack a table and an index, and returns the contents of the table at that index. As
in Lua, if the first object is not a table, or the index is not present in the table, the corresponding
fallback is called.

To store a value in an index, the program must push onto the stack the table, the index, and
the value, and then call the function:

12

void lua_storesubscript (void);

Again, the corresponding fallback is called if needed.
Finally, the function

lua_0Object lua_createtable (void);

creates and returns a new table.

Please Notice: Most functions from the Lua library receive parameters through Lua’s stack.
Because other functions also use this stack, it is important that these parameters be pushed just
before the corresponding call, without intermediate calls to the Lua library. For instance, suppose
the user wants the value of a[i]. A simplistic solution would be:

/* Warning: WRONG CODE */

lua_0Object result;
lua_pushobject(lua_getglobal("a")); /* push table */
lua_pushobject(lua_getglobal("i")); /* push index */
result = lua_getsubscript();

However, the call 1lua_getglobal("i") modifies the stack, and invalidates the previous pushed
value. A correct solution could be:

lua_0Object result;

lua_Object index = lua_getglobal("i");
lua_pushobject(lua_getglobal("a")); /* push table */
lua_pushobject (index) ; /* push index */
result = lua_getsubscript();

The functions lua_getnumber, lua_getstring, lua_getuserdata, and lua_getcfunction, plus
the family 1ua_is*, are safe to be called without modifying the stack.

5.4 Calling Lua Functions

Functions defined in Lua by a chunk executed with dofile or dostring can be called from the

host program. This is done using the following protocol: first, the arguments to the function are

pushed onto the Lua stack (see Section 5.2), in direct order, i.e., the first argument is pushed first.

Again, it is important to emphasize that, during this phase, no other Lua function can be called.
Then, the function is called using

int lua_call (char *functionname) ;
or
int lua_callfunction (lua_Object function);

Both functions return an error code: 0, in case of success; non zero, in case of errors. Finally, the
returned values (a Lua function may return many values) can be retrieved with the macro

lua_Object lua_getresult (int number);

where number is the order of the result, starting with 1. When called with a number larger than
the actual number of results, this function returns LUA_NOOBJECT.

Two special Lua functions have exclusive interfaces: error and setfallback. A C function
can generate a Lua error calling the function

13

void lua_error (char *message);

This function never returns. If the C function has been called from Lua, the corresponding Lua
execution terminates, as if an error had occurred inside Lua code. Otherwise, the whole program
terminates.

Fallbacks can be changed with:

lua_Object lua_setfallback (char *name, lua_CFunction fallback);

The first parameter is the fallback name, and the second a CFunction to be used as the new fallback.
This function returns a lua_Object, which is the old fallback value, or nil on fail (invalid fallback
name). This old value can be used for chaining fallbacks.

An example of C code calling a Lua function is shown in Section 8.10.

5.5 C Functions

To register a C function to Lua, there is the following macro:

#define lua_register(n,f) (lua_pushcfunction(f), lua_storeglobal(n))
/* char *n; */
/* lua_CFunction f; */

which receives the name the function will have in Lua, and a pointer to the function. This pointer
must have type lua_CFunction, which is defined as

typedef void (*lua_CFunction) (void);

that is, a pointer to a function with no parameters and no results.

In order to communicate properly with Lua, a C function must follow a protocol, which defines
the way parameters and results are passed.

To access its arguments, a C function calls:

lua_Object lua_getparam (int number) ;

where number starts with 1 to get the first argument. When called with a number larger than the
actual number of arguments, this function returns LUA_NOOBJECT. In this way, it is possible to write
functions that work with a variable number of parameters.

To return values, a C function just pushes them onto the stack, in direct order (see Section 5.2).
Like a Lua function, a C function called by Lua can also return many results.

Section 8.9 presents an example of a CFunction.

5.6 References to Lua Objects

As noted in Section 5.5, lua_0bjects are volatile. If the C code needs to keep a lua_0bject outside
block boundaries, it must create a reference to the object. The routines to manipulate references
are the following:

int lua_ref (int lock);
lua_Object lua_getref (int ref);
void lua_pushref (int ref);
void lua_unref (int ref);

14

The function lua_ref creates a reference to the object that is on the top of the stack, and returns
this reference. If lock is true, the object is locked: that means the object will not be garbage
collected. Notice that an unlocked reference may be garbage collected. Whenever the referenced
object is needed, a call to lua_getref returns a handle to it, whereas lua_pushref pushes the
object on the stack. If the object has been collected, then lua_getref returns LUA_NOOBJECT, and
lua_pushobject issues an error.

When a reference is no longer needed, it can be freed with a call to lua_unref.

6 Predefined Functions and Libraries

The set of predefined functions in Lua is small but powerful. Most of them provide features that
allows some degree of reflexivity in the language. Some of these features cannot be simulated with
the rest of the Language nor with the standard Lua API. Others are just convenient interfaces to
common API functions.

The libraries, on the other hand, provide useful routines that are implemented directly through
the standard API. Therefore, they are not necessary to the language, and are provided as separated
C modules. Currently there are three standard libraries:

e string manipulation;
e mathematical functions (sin, cos, etc);
e input and output (plus some system facilities).

In order to have access to these libraries, the host program must call the functions strlib_open,
mathlib_open, and iolib_open, declared in lualib.h.

6.1 Predefined Functions
e dofile (filename)

This function receives a file name, opens it, and executes its contents as a Lua chunk, or as pre-
compiled chunks. When called without arguments, it executes the contents of the standard input
(stdin). If there is any error executing the file, it returns nil. Otherwise, it returns the values
returned by the chunk, or a non nil value if the chunk returns no values. It issues an error when
called with a non string argument.

e dostring (string)

This function executes a given string as a Lua chunk. If there is any error executing the string, it
returns nil. Otherwise, it returns the values returned by the chunk, or a non nil value if the chunk
returns no values.

e next (table, index)

This function allows a program to traverse all fields of a table. Its first argument is a table and
its second argument is an index in this table. It returns the next index of the table and the value
associated with the index. When called with nil as its second argument, the function returns the
first index of the table (and its associated value). When called with the last index, or with nil in
an empty table, it returns nil.

15

In Lua there is no declaration of fields; semantically, there is no difference between a field not
present in a table or a field with value nil. Therefore, the function only considers fields with non
nil values. The order the indices are enumerated is not specified, even for numeric indices.

See Section 8.2 for an example of the use of this function.

e nextvar (name)

This function is similar to the function next, but iterates over the global variables. Its single
argument is the name of a global variable, or nil to get a first name. Similarly to next, it returns
the name of another variable and its value, or nil if there are no more variables. See Section 8.2
for an example of the use of this function.

e tostring (e)

This function receives an argument of any type and converts it to a string in a reasonable format.

e print (el, e2, ...)

This function receives any number of arguments, and prints their values in a reasonable format.
Each value is printed in a new line. This function is not intended for formatted output, but as
a quick way to show a value, for instance for error messages or debugging. See Section 6.4 for
functions for formatted output.

e tonumber (e)

This function receives one argument, and tries to convert it to a number. If the argument is already a
number or a string convertible to a number (see Section 4.2), then it returns that number; otherwise,
it returns nil.

e type (v)

This function allows Lua to test the type of a value. It receives one argument, and returns its type,
coded as a string. The possible results of this function are "nil" (a string, not the value nil),
"number", "string", "table", "function" (returned both for C functions and Lua functions),
and "userdata".

Besides this string, the function returns a second result, which is the tag of the value. This tag
can be used to distinguish between user data with different tags, and between C functions and Lua
functions.

e assert (v)

This function issues an “assertion failed!” error when its argument is nil.

e error (message)

This function issues an error message and terminates the last called function from the library
(lua_dofile, lua_dostring, ...). It never returns.

16

e setglobal (name, value)

This function assigns the given value to a global variable. The string name does not need to be
a syntactically valid variable name. Therefore, this function can set global variables with strange
names like ‘m v 1’ or 34. It returns the value of its second argument.

e getglobal (name)

This function retrieves the value of a global variable. The string name does not need to be a
syntactically valid variable name.

e setfallback (fallbackname, newfallback)

This function sets a new fallback function to the given fallback. It returns the old fallback function.

6.2 String Manipulation

This library provides generic functions for string manipulation, such as finding and extracting sub-
strings and pattern matching. When indexing a string, the first character has position 1. See
Page 19 for an explanation about patterns, and Section 8.3 for some examples on string manipula-
tion in Lua.

e strfind (str, pattern [, init [, plain]])

This function looks for the first match of pattern in str. If it finds one, it returns the indexes
on str where this occurence starts and ends; otherwise, it returns nil. If the pattern specifies
captures, the captured strings are returned as extra results. A third optional numerical argument
specifies where to start the search; its default value is 1. A value of 1 as a forth optional argument
turns off the pattern matching facilities, so the function does a plain “find substring” operation.

e strlen (s)

Receives a string and returns its length.

e strsub (s, i [, j1)

Returns another string, which is a substring of s, starting at i and runing until j. If j is absent,
it is assumed to be equal to the length of s. In particular, the call strsub(s,1,j) returns a prefix
of s with length j, whereas the call strsub(s,i) returns a suffix of s, starting at i.

e strlower (s)

Receives a string and returns a copy of that string with all upper case letters changed to lower case.
All other characters are left unchanged.

e strupper (s)

Receives a string and returns a copy of that string with all lower case letters changed to upper case.
All other characters are left unchanged.

17

e strrep (s, n)

Returns a string which is the concatenation of n copies of the string s.

e ascii (s [, il)

Returns the ascii code of the character s[i]. If i is absent, then it is assumed to be 1.

e format (formatstring, el, e2, ...)

This function returns a formated version of its variable number of arguments following the descrip-
tion given in its first argument (which must be a string). The format string follows the same rules
as the printf family of standard C functions. The only differences are that the options/modifiers
*, 1 L n, p, and h are not supported, and there is an extra option, q. This option formats a
string in a form suitable to be safely read back by the Lua interpreter; that is, the string is written
between double quotes, and all double quotes, returns and backslashes in the string are correctly
escaped when written. For instance, the call

format(’%q’, ’a string with "quotes" and \n new line’)
will produce the string:

"a string with \"quotes\" and \
new line"

The options c, 4, E, e, f, g i, o, u, X, and x all expect a number as argument, whereas q and s
expect a string.

e gsub (s, pat, repl [, nl)

Returns a copy of s, where all occurrences of the pattern pat have been replaced by a replace-
ment string specified by repl. This function also returns, as a second value, the total number of
substitutions made.

If repl is a string, its value is used for replacement. Any sequence in repl of the form %n with
n between 1 and 9 stands for the value of the n-th captured substring.

If repl is a function, this function is called every time a match occurs, with all captured
substrings as parameters. If the value returned by this function is a string, it is used as the
replacement string; otherwise, the replacement string is the empty string.

An optional parameter n limits the maximum number of substitutions to occur. For instance,
when n is 1 only the first occurrence of pat is replaced.

As an example, in the following expression each occurrence of the form $name$ calls the function
getenv, passing name as argument (because only this part of the pattern is captured). The value
returned by getenv will replace the pattern. Therefore, the whole expression:

gsub("home = $HOME$, user = $USER$", "$(hwiw*)$", getenv)
may return the string:

home = /home/roberto, user = roberto

18

Patterns

Character Class: a character class is used to represent a set of characters. The following
combinations are allowed in describing a character class:

z (where z is any character not in the list ()%. [*?) — represents the character z itself.
. — represents all characters.

%a — represents all letters.

%A — represents all non letter characters.

%d — represents all digits.

%D — represents all non digits.

%L — represents all lower case letters.

%L — represents all non lower case letter characters.

%s — represents all space characters.

%S — represents all non space characters.

%u — represents all upper case letters.

%U — represents all non upper case letter characters.

%w — represents all alphanumeric characters.

%W — represents all non alphanumeric characters.

%z (where z is any non alphanumeric character) — represents the character z.

[char-set] — Represents the class which is the union of all characters in char-set. To include a]
in char-set, it must be the first character. A range of characters may be specified by separating
the end characters of the range with a -; e.g., A-Z specifies the upper case characters. If -
appears as the first or last character of char-set, then it represents itself. All classes %z
described above can also be used as components in a char-set. All other characters in char-
set represent themselves.

[“char-set] — represents the complement of char-set, where char-set is interpreted as above.

Pattern Item: a pattern item may be a single character class, or a character class followed by
* or by 7. A single character class matches any single character in the class. A character class
followed by * matches 0 or more repetitions of characters in the class. A character class followed
by ? matches 0 or one occurrence of a character in the class. A pattern item may also has the form
%n, for n between 1 and 9; such item matches a sub-string equal to the n-th captured string.

19

Pattern: a pattern is a sequence of pattern items. Any repetition item (*) inside a pattern will
always match the longest possible sequence. A ~ at the beginning of a pattern anchors the match
at the beginning of the subject string. A $ at the end of a pattern anchors the match at the end
of the subject string.

A pattern may contain sub-patterns enclosed in parentheses, that describe captures. When a
match succeeds, the sub-strings of the subject string that match captures are captured for future
use. Captures are numbered according to their left parentheses.

6.3 Mathematical Functions

This library is an interface to some functions of the standard C math library. Moreover, it registers
a fallback for the binary operator = which, when applied to numbers x”y, returns z¥.
The library provides the following functions:

abs acos asin atan atan2 ceil cos floor log loglO
max min mod sin sqrt tan random randomseed

Most of them are only interfaces to the homonymous functions in the C library, except that, for
the trigonometric functions, all angles are expressed in degrees, not radians.

The function max returns the maximum value of its numeric arguments. Similarly, min computes
the minimum. Both can be used with an unlimited number of arguments.

The functions random and randomseed are interfaces to the simple random generator functions
rand and srand, provided by ANSI C. The function random returns pseudo-random numbers in
the range [0,1).

6.4 I/0 Facilities

All T/O operations in Lua are done over two current files: one for reading and one for writing.
Initially, the current input file is stdin, and the current output file is stdout.

Unless otherwise stated, all I/O functions return nil on failure and some value different from
nil on success.

o readfrom (filename)

This function may be called in three ways. When called with a file name, it opens the named file,
sets it as the current input file, and returns a handle to the file (this handle is a user data containing
the file stream FILE *). When called with a file handle, returned by a previous call, it restores
the file as the current input. When called without parameters, it closes the current input file, and
restores stdin as the current input file.

If this function fails, it returns nil, plus a string describing the error.

System dependent: if filename starts with a |, then a piped input is open, via function popen.

e writeto (filename)

This function may be called in three ways. When called with a file name, it opens the named
file, sets it as the current output file, and returns a handle to the file (this handle is a user data
containing the file stream FILE). Notice that, if the file already exists, it will be completely erased
with this operation. When called with a file handle, returned by a previous call, it restores the file

20

as the current output. When called without parameters, this function closes the current output
file, and restores stdout as the current output file.

If this function fails, it returns nil, plus a string describing the error.

System dependent: if filename starts with a |, then a piped output is open, via function popen.

e appendto (filename)

This function opens a file named filename and sets it as the current output file. It returns the

file handle, or nil in case of error. Unlike the writeto operation, this function does not erase any

previous content of the file. If this function fails, it returns nil, plus a string describing the error.
Notice that function writeto is available to close a file.

e remove (filename)

This function deletes the file with the given name. If this function fails, it returns nil, plus a string
describing the error.

e rename (namel, name2)

This function renames file namel to name2. If this function fails, it returns nil, plus a string
describing the error.

e tmpname ()

This function returns a string with a file name that can safely be used for a temporary file.

e read ([readpattern])

This function reads the current input according to a read pattern, that specifies how much to read;
characters are read from the current input file until the read pattern fails or ends. The function
read returns a string with the characters read, or nil if the read pattern fails and the result string
would be empty. When called without parameters, it uses a default pattern that reads the next
line (see below).

A read pattern is a sequence of read pattern items. An item may be a single character class
or a character class followed by 7 or by *. A single character class reads the next character from
the input if it belongs to the class, otherwise it fails. A character class followed by ? reads the
next character from the input if it belongs to the class; it never fails. A character class followed
by * reads until a character that does not belong to the class, or end of file; since it can match a
sequence of zero characteres, it never fails.*

A pattern item may contain sub-patterns enclosed in curly brackets, that describe skips. Char-
acters matching a skip are read, but are not included in the resulting string.

Following are some examples of read patterns and their meanings:

e " " returns the next character, or nil on end of file.

o ".x" reads the whole file.

“Notice that this behaviour is different from regular pattern matching, where a * expands to the maximum length
such that the rest of the pattern does not fail.

21

e "[“\n]l*{\n}" returns the next line (skipping the end of line), or nil on end of file. This is
the default pattern.

o "{%s*}%S%S*" returns the next word (maximal sequence of non white-space characters), or
nil on end of file.

o "{%sx}[+-17%d%d*" returns the next integer or nil if the next characters do not conform to
an integer format.
e write (valuel, ...)

This function writes the value of each of its arguments to the current output file. The arguments
must be strings or numbers. If this function fails, it returns nil, plus a string describing the error.

e date ([format])

This function returns a string containing date and time formatted according to the given string
format, following the same rules of the ANSI C function strftime. When called without argu-
ments, it returns a reasonable date and time representation.

e exit ([code])

This function calls the C function exit, with an optional code, to terminate the program.

e getenv (varname)

Returns the value of the environment variable varname, or nil if the variable is not defined.

e execute (command)

This function is equivalent to the C function system. It passes command to be executed by an
Operating System Shell. It returns an error code, which is implementation-defined.

7 The Debugger Interface

Lua has no built-in debugger facilities. Instead, it offers a special interface, by means of functions
and hooks, which allows the construction of different kinds of debuggers, profilers, and other tools
that need “inside information” from the interpreter. This interface is declared in the header file
luadebug.h.

7.1 Stack and Function Information
The main function to get information about the interpreter stack is
lua_Function lua_stackedfunction (int level);

It returns a handle (lua_Function) to the activation record of the function executing at a given
level. Level 0 is the current running function, while level n + 1 is the function that has called
level n. When called with a level greater than the stack depth, lua_stackedfunction returns
LUA_NOOBJECT.

22

The type lua_Function is just another name to lua_0bject. Although, in this library, a
lua_Function can be used wherever a lua_Object is required, a parameter lua_Function accepts
only a handle returned by lua_stackedfunction.

Three other functions produce extra information about a function:

void lua_funcinfo (lua_0bject func, char **filename, int *linedefined);
int lua_currentline (lua_Function func);
char *lua_getobjname (lua_Object o, char **name) ;

lua_funcinfo gives the file name and the line where the given function has been defined. If the
“function” is in fact the main code of a chunk, then linedefined is 0. If the function is a C
function, then linedefined is -1, and filename is "(C)".

The function lua_currentline gives the current line where a given function is executing. It
only works if the function has been pre-compiled with debug information (see Section 4.8). When
no line information is available, it returns -1.

Function lua_getobjname tries to find a reasonable name for a given function. Because func-
tions in Lua are first class values, they do not have a fixed name. Some functions may be the value of
many global variables, while others may be stored only in a table field. Function lua_getobjname
first checks whether the given function is a fallback. If so, it returns the string "fallback", and
name is set to point to the fallback name. Otherwise, if the given function is the value of a global
variable, then lua_getobjname returns the string "global", while name points to the variable name.
If the given function is neither a fallback nor a global variable, then 1ua_getobjname returns the
empty string, and name is set to NULL.

7.2 Manipulating Local Variables

The following functions allow the manipulation of the local variables of a given activation record.
They only work if the function has been pre-compiled with debug information (see Section 4.8).

lua_Object lua_getlocal (lua_Function func, int local_number, char **name);
int lua_setlocal (lua_Function func, int local_number);

The first one returns the value of a local variable, and sets name to point to the variable name.
local_number is an index for local variables. The first parameter has index 1, and so on, until
the last active local variable. When called with a local_number greater than the number of
active local variables, or if the activation record has no debug information, lua_getlocal returns
LUA_NOOBJECT.

The function lua_setlocal sets the local variable local_number to the value previously pushed
on the stack (see Section 5.2). If the function succeeds, then it returns 1. If local_number is greater
than the number of active local variables, or if the activation record has no debug information, then
this function fails and returns 0.

7.3 Hooks

The Lua interpreter offers two hooks for debugging purposes:

typedef void (*lua_CHFunction) (lua_Function func, char *file, int line);
extern lua_CHFunction lua_callhook;

typedef void (*lua_LHFunction) (int line);
extern lua_LHFunction lua_linehook;

23

The first one is called whenever the interpreter enters or leaves a function. When entering a
function, its parameters are a handle to the function activation record, plus the file and the line
where the function is defined (the same information which is provided by lua_funcinfo); when
leaving a function, func is LUA_NOOBJECT, file is "(return)", and line is 0.

The other hook is called every time the interpreter changes the line of code it is execut-
ing. Its only parameter is the line number (the same information which is provided by the call
lua_currentline (lua_stackedfunction(0))). This second hook is only called if the active func-
tion has been pre-compiled with debug information (see Section 4.8).

A hook is disabled when its value is NULL (0), which is the initial value of both hooks.

8 Some Examples

This section gives examples showing some features of Lua. It does not intend to cover the whole
language, but only to illustrate some interesting uses of the system.

8.1 Data Structures

Tables are a strong unifying data constructor. They directly implement a multitude of data types,
like ordinary arrays, records, sets, bags, and lists.

Arrays need no explanations. In Lua, it is conventional to start indices from 1, but this is
only a convention. Arrays can be indexed by 0, negative numbers, or any other value (except nil).
Records are also trivially implemented by the syntactic sugar a.x.

The best way to implement a set is to store its elements as indices of a table. The statement
s = {} creates an empty set s. The statement s[x] = 1 inserts the value of x into the set s. The
expression s [x] is true if and only if x belongs to s. Finally, the statement s[x] = nil removes x
from s.

Bags can be implemented similarly to sets, but using the value associated to an element as its
counter. So, to insert an element, the following code is enough:

if s[x] then s[x] = s[x]+1 else s[x] = 1 end
and to remove an element:

if s[x] then s[x] = s[x]-1 end
if s[x] == 0 then s[x] = nil end

Lisp-like lists also have an easy implementation. The “cons” of two elements x and y can
be created with the code 1 = {car=x, cdr=y}. The expression 1.car extracts the header, while
1.cdr extracts the tail. An alternative way is to create the list directly with 1={x,y}, and then to
extract the header with 1[1] and the tail with 1[2].

8.2 The Functions next and nextvar

This example shows how to use the function next to iterate over the fields of a table. Function
clone receives any table and returns a clone of it.

function clone (t) -- t is a table
local new_t = {} -- create a new table
local i, v = next(t, nil) -- i is an index of t, v = t[i]

24

while i do
new_t[i] = v

i, v = next(t, i) -- get next index
end
return new_t

end
The next example prints the names of all global variables in the system with non nil values:

function printGlobalVariables ()
local i, v = nextvar(nil)
while i do

print (i)
i, v = nextvar(i)
end

end

8.3 String Manipulation
The first example is a function to trim extra white-spaces at the beginning and end of a string.

function trim(s)
local _, i = strfind(s, ’~ *’)

local f, __ = strfind(s, ’ *$’)
return strsub(s, i+1, f-1)
end

The second example shows a function that eliminates all spaces of a string.

function remove_blanks (s)
return gsub(s, "%sks*", "")
end

8.4 Variable number of arguments

Lua does not provide any explicit mechanism to deal with variable number of arguments in function
calls. However, one can use table constructors to simulate this mechanism. As an example, suppose
a function to concatenate all its arguments. It could be written like

function concat (o)
local i =1
local s = ??
while o[i] do

s

non

Heowm

<+

= .
o
mrm
=
—_

i
end
return s

end

To call it, one uses a table constructor to join all arguments:

x = concat{"hello ", "john", " and ", "mary"}

25

8.5 Persistence

Because of its reflexive facilities, persistence in Lua can be achieved within the language. This
section shows some ways to store and retrieve values in Lua, using a text file written in the language
itself as the storage media.

To store a single value with a name, the following code is enough:

function store (name, value)
write(format(’\n’%s =’, name))
write_value(value)

end

function write_value (value)
local t = type(value)

if == ’nil’ then write(’nil’)
elseif t == ’number’ then write(value)
elseif t == ’string’ then write(value, ’q’)
end

end

In order to restore this value, a lua_dofile suffices.

Storing tables is a little more complex. Assuming that the table is a tree, and that all indices
are identifiers (that is, the tables are being used as records), then its value can be written directly
with table constructors. First, the function write_value is changed to

function write_value (value)
local t = type(value)

if t == ’nil’ then write(’nil?’)
elseif t == ’number’ then write(value)
elseif t == ’string’ then write(value, ’q’)
elseif t == ’table’ then write_record(value)
end

end
The function write_record is:

function write_record(t)
local i, v = next(t, nil)
write(’{’) -- starts constructor
while i do
store(i, v)
write(’, ?)
i, v = next(t, i)
end
write(’}’) -- closes constructor
end

8.6 Inheritance

The fallback for absent indices can be used to implement many kinds of inheritance in Lua. As an
example, the following code implements single inheritance:

26

function Index (t,f)
if f == ’parent’ then -- to avoid loop
return 0ldIndex(t,f)
end
local p = t.parent
if type(p) == ’table’ then
return p[f]
else
return 0ldIndex(t,f)
end
end

0ldIndex = setfallback("index", Index)

Whenever Lua attempts to access an absent field in a table, it calls the fallback function Index. If
the table has a field parent with a table value, then Lua attempts to access the desired field in this
parent object. This process is repeated “upwards” until a value for the field is found or the object
has no parent. In the latter case, the previous fallback is called to supply a value for the field.

When better performance is needed, the same fallback may be implemented in C, as illustrated
in Figure 1. This code must be registered with:

lua_pushstring("parent");

lockedParentName = lua_ref(1);
lua_pushobject(lua_setfallback("index", Index));
locked0ldIndex = lua_ref(1);

Notice how the string "parent" is kept locked in Lua for optimal performance.

8.7 Programming with Classes

There are many different ways to do object-oriented programming in Lua. This section presents
one possible way to implement classes, using the inheritance mechanism presented above. Please
notice: the following examples only work with the index fallback redefined according to Section 8.6.

As one could expect, a good way to represent a class is with a table. This table will contain all
instance methods of the class, plus optional default values for instance variables. An instance of a
class has its parent field pointing to the class, and so it “inherits” all methods.

For instance, a class Point can be described as in Figure 2. Function create helps the creation
of new points, adding the parent field. Function move is an example of an instance method. Finally,
a subclass can be created as a new table, with the parent field pointing to its superclass. It is
interesting to notice how the use of self in method create allows this method to work properly
even when inherited by a subclass. As usual, a subclass may overwrite any inherited method with
its own version.

8.8 Modules

Here we explain one possible way to simulate modules in Lua. The main idea is to use a table to
store the module functions.
A module should be written as a separate chunk, starting with:

27

#include "lua.h"

int lockedParentName; /* lock index for the string "parent" */
int locked0ldIndex; /* previous fallback function */

void call0ldFallback (lua_Object table, lua_Object index)
{
lua_Object oldIndex = lua_getref (locked0ldIndex);
lua_pushobject (table) ;
lua_pushobject (index) ;
lua_callfunction(oldIndex) ;
if (lua_getresult(1l) != LUA_NOOBJECT)
lua_pushobject(lua_getresult(1)); /* return result */

void Index (void)
{
lua_0Object table
lua_0Object index
lua_Object parent;
if (lua_isstring(index) && strcmp(lua_getstring(index), "parent") == 0)

{

lua_getparam(1);
lua_getparam(2) ;

call0ldFallback(table, index);
return;
}
lua_pushobject (table) ;
lua_pushref (lockedParentName) ;
parent = lua_getsubscript();
if (lua_istable(parent))
{
lua_pushobject(parent) ;
lua_pushobject (index) ;
/* return result from getsubscript */
lua_pushobject (lua_getsubscript());
}
else
callOldFallback(table, index);

Figure 1: Inheritance in C.

28

Point = {x = 0, y = 0}

function Point:create (o)
o.parent = self
return o

end

function Point:move (p)
self.x = self.x + p.x
self.y = self.y + p.y

end

-- creating points

= Point:create{x = 10, y = 20}
Point:create{x = 10} -- y will be inherited until it is set

hel
et
|

el
N
I

-- example of a method invocation

pl:move (p2)

Figure 2: A Class Point.

29

function open (mod)
local n, f = next(mod, nil)
while n do
setglobal(n, f)
n, f = next(mod, n)

end
end
Figure 3: Opening a module.
if modulename then return end -- avoid loading twice the same module
modulename = {} -- create a table to represent the module

After that, functions can be directly defined with the syntax

function modulename.foo (...)

end

Any code that needs this module has only to execute dofile("filename"), where filename is
the file where the module is written. After this, any function can be called with

modulename.foo(...)

If a module function is going to be used many times, the program can give a local name to it.
Because functions are values, it is enough to write

localname = modulename.foo

Finally, a module may be opened, giving direct access to all its functions, as shown in the code in
Figure 3.

8.9 A CFunction

A CFunction to compute the maximum of a variable number of arguments is shown in Figure 4.
After registered with

lua_register ("max", math_max);
this function is available in Lua, as follows:

i = max(4, 5, 10, -34) -- i receives 10

8.10 Calling Lua Functions

This example illustrates how a C function can call the Lua function remove_blanks presented in
Section 8.3.

30

void math_max (void)
{
int i=1; /* number of arguments */
double d, dmax;
lua_Object o;
/* the function must get at least one argument */
if ((o = lua_getparam(i++)) == LUA_NOOBJECT)
lua_error ("too few arguments to function ‘max’");
/* and this argument must be a number */
if (!lua_isnumber(o))
lua_error ("incorrect argument to function ‘max’");
dmax = lua_getnumber (o);
/* loops until there is no more arguments */
while ((o = lua_getparam(i++)) != LUA_NOOBJECT)
{
if (!lua_isnumber(o))
lua_error ("incorrect argument to function ‘max’");
d = lua_getnumber (o);
if (d > dmax) dmax = d;
}
/* push the result to be returned */
lua_pushnumber (dmax);

Figure 4: C function math max.

31

void remove_blanks (char *s)
{

lua_pushstring(s); /* prepare parameter */

lua_call("remove_blanks"); /* call Lua function */

strcpy(s, lua_getstring(lua_getresult(1))); /* copy result back to ’s’ */
}

9 Lua Stand-alone

Although Lua has been designed as an extension language, the language can also be used as a
stand-alone interpreter. An implementation of such an interpreter, called simply lua, is provided
with the standard distribution. This program can be called with any sequence of the following
arguments:

-v prints version information.

- runs interactively, accepting commands from standard input until an EOF.
-e stat executes stat as a Lua chunk.

var=exp executes var=exp as a Lua chunk.

filename executes file filename as a Lua chunk.

All arguments are handle in order. For instance, an invocation like

$ lua - a=1 prog.lua

will first interact with the user until an EOF, then will set a to 1, and finally will run file prog. lua.
Please notice that the interaction with the shell may lead to unintended results. For instance,
a call like

$ lua a="name" prog.lua

will not set a to the string "name". Instead, the quotes will be handled by the shell, lua will get
only a=name to run, and a will finish with nil. Instead, one should write

$ lua ’a="name"’ prog.lua

Acknowledgments

The authors would like to thank CENPES/ PETROBRAS which, jointly with TeCg 5, used exten-
sively early versions of this system and gave valuable comments. The authors would also like to
thank Carlos Henrique Levy, who found the name of the game. Lua means moon in Portuguese.

Incompatibilities with Previous Versions

Although great care has been taken to avoid incompatibilities with the previous public versions of
Lua, some differences had to be introduced. Here is a list of all these incompatibilities.

32

Incompatibilities with version 2.4

The whole I/0O facilities have been rewritten. We strongly encourage programmers to addapt their
code to this new version. However, we are keeping the old version of the libraries in the distribution,
to allow a smooth transition. The incompatibilities between the new and the old libraries are:

The format facility of function write has been supersed by function format; therefore this
facility has been dropped.

Function read now uses read patterns to specify what to read; this is incompatible with the
old format options.

Function strfind now accepts patterns, so it may have a different behavior when the pattern
includes special characteres.

Incompatibilities with version 2.2

Functions date and time (from iolib) have been superseded by the new, more powerful
version of function date.

Function append (from iolib) now returns 1 whenever it succeeds, whether the file is new
or not.

Function int2str (from strlib) has been superseded by new function format, with param-
eter "Yc".

The API lock mechanism has been superseded by the reference mechanism. However, 1lua.h
provides compatibility macros, so there is no need to change programs.

The API function lua_pushliteral now is just a macro to lua_pushstring.

Incompatibilities with version 2.1

The function type now returns the string "function" both for C and Lua functions. Because
Lua functions and C functions are compatible, this behavior is usually more useful. When
needed, the second result of function type may be used to distinguish between Lua and C
functions.

A function definition only assigns the function value to the given variable at execution time.

Incompatibilities with version 1.1

The equality test operator now is denoted by ==, instead of =.

The syntax for table construction has been greatly simplified. The old @(size) has been sub-
stituted by {}. The list constructor (formerly @[...]) and the record constructor (formerly
@{...}) now are both coded like {...}. When the construction involves a function call, like
in @funcq{. ..}, the new syntax does not use the @ More important, a construction function
must now explicitly return the constructed table.

The function lua_call no longer has the parameter nparam.

33

The function lua_pop is no longer available, since it could lead to strange behavior. In
particular, to access results returned from a Lua function, the new macro lua_getresult
should be used.

The old functions lua_storefield and lua_storeindexed have been replaced by
int lua_storesubscript (void);

with the parameters explicitly pushed on the stack.

The functionality of the function lua_errorfunction has been replaced by the fallback mech-
anism (see Section 4.8).

When calling a function from the Lua library, parameters passed through the stack must be
pushed just before the corresponding call, with no intermediate calls to Lua. Special care
should be taken with macros like lua_getindexed and lua_getfield.

34

Index

.. 6

abs 20

acos 20
Adjustment 3

and 6

appendto 21
arguments 8
arithmetic fallback 9
arithmetic operators 5
arrays 2

ascii 18

asin 20

assert 16
Assignment 4
associative arrays 2
atan 20

atan2 20

basic types 2

block 4

C pointers 2
captures 20

ceil 20

CFunction 2
character class 19
chunk 2

clone 24

closing a file 21
Coercion 3
Comments 3
concatenation fallback 9
concatenation 6
condition expression 4
constructors 6

cos 20

Data Structures 24
date 22

debug pragma 10
dofile 15

dostring 15

error fallback 10
error 16

execute 22

exit 22
exponentiation 5

Expressions 5
fallbacks 9

floor 20

format 18

function call 7
Function Definitions 8
function fallback 9
function 2
functions in C 30
getenv 22
getglobal 17
gettable fallback 9
global environment 2
Global variables 2
gsub 18

Identifiers 3
if-then-else 4

index fallback 9
index getglobal 9
inheritance 26
Literal strings 3
Local variables 5
log10 20

log 20

logical operators 6
Lua Stand-alone 32
luac 11

luac 2

lua_call 13
lua_callfunction 13
lua_CFunction 14
lua_createtable 13
lua_dofile 10
lua_dostring 10
lua_error 13
lua_getcfunction 11
lua_getglobal 12
lua_getnumber 11
lua_getparam 14
lua_getref 14
lua_getresult 13
lua_getstring 11
lua_getsubscript 12
lua_getuserdata 11

lua_iscfunction 11
lua_isfunction 11
lua_isnil 11
lua_isnumber 11
lua_isstring 11
lua_istable 11
lua_isuserdata 11
LUA_NOOBJECT 14
lua_Object 11
lua_pushcfunction 12
lua_pushnil 12
lua_pushnumber 12
lua_pushobject 12
lua_pushref 14
lua_pushstring 12
lua_pushuserdata 12
lua_pushusertag 12
lua_ref 14
lua_register 14
lua_setfallback 14
lua_storeglobal 12
lua_storesubscript 12
lua_type 11
lua_unref 14

max 20

methods 8

min 20

mod 20

Modules 27

multiple assignment 4
next 15

next 24

nextvar 16

nextvar 24

nil 2

not 6

number 2

Numerical constants 3
Operator precedence 6
or 6

order fallback 9
pattern item 19
pattern 20
Persistence 26

piped input 20
piped output 21
popen 20

36

popen 21
pre-compilation 2
predefined functions 15
print 16
Programming with Classes 27
random 20
randomseed 20

read pattern 21

read 21

readfrom 20

records 2

reference 14
reflexivity 15
relational operators 5
remove 21

rename 21
repeat-until 4
reserved words 3
return statement 5
return 4

self 8

setfallback 10
setfallback 17
setglobal 17

settable fallback 9
short-cut evaluation 6
Simple Expressions 5
sin 20

skips 21

sqrt 20

statements 4

strfind 17

string 2

strlen 17

strlower 17

strrep 18

strsub 17

strupper 17

table 2

tag 16

tan 20

tmpname 21

tokens 3

tonumber 16
tostring 16

type 16

Types 2

userdata, 2

Variable number of arguments 25
version 1.1 33

version 2.1 33

version 2.2 33

version 2.4 33

while-do 4

write 22

writeto 20

37

Contents

1 Introduction 1
2 Environment and Chunks 2
3 Types 2
4 The Language 3
4.1 Lexical Conventions o v i v i e e e e e e 3
4.2 COCTCION v v o o e e e e e e e e e e 3
4.3 Adjustmento 3
4.4 Statements e e e e e e e e e e 4
4.4.1 Blocks e 4

4.4.2 Assignment e 4

4.4.3 Control Structures 4

4.4.4 Function Calls as Statements 5

4.4.5 Local Declarations e 5

4.5 EXPressions oo e e e e e e e e e 5
4.5.1 Simple Expressions Lo)

4.5.2 Arithmetic Operators e 5

4.5.3 Relational Operators e e 5

4.5.4 Logical Operators 6

4.5.5 Concatenation e 6

4.5.6 Precedence 6

4.5.7 Table Constructors 6

458 Function Calls e 7

4.6 Function Definitions e 8
4.7 Fallbacks e 9
4.8 FError Handling 10

5 The Application Program Interface 10
5.1 Executing Lua Code e 10
5.2 Converting Values between Cand Lua 11
5.3 Manipulating Lua Objects 12
5.4 Calling Lua Functions e 13
5.5 CFunctions e e e e e e e 14
5.6 References to Lua Objects 14

6 Predefined Functions and Libraries 15
6.1 Predefined Functionso 15
6.2 String Manipulation Lo 17
6.3 Mathematical Functions e 20
6.4 I/O Facilities 20

38

7 The Debugger Interface

7.1 Stack and Function Information
7.2 Manipulating Local Variables 0 L
7.3 Hooks e e

8 Some Examples

8.1 Data Structures e e e e e
8.2 The Functions next and nextvar v i i
8.3 String Manipulation Lo
8.4 Variable number of argumentso oL L
8.5 Persistence e e e e e e
8.6 Imheritance e
8.7 Programming with Classes
8.8 Modules e e e
8.9 A CFunction @ i e e e e

8.10 Calling Lua Functions

9 Lua Stand-alone

39

22
22
23
23

24
24
24
25
25
26
26
27
27
30
30

32

