
Reference Manual of the Programming Language Lua ���

Roberto Ierusalimschy Luiz Henrique de Figueiredo Waldemar Celes

lua�icad�puc�rio�br

TeCGraf � Departamento de Inform�atica � PUC�Rio

Date� ���������� �	�
��	

Abstract

Lua is an extension programming language designed to be used as a con�guration language
for any program that needs one� This document describes version ��� of the Lua programming
language and the API that allows interaction between Lua programs and their host C programs�
The document also presents some examples of using the main features of the system�

Sum�ario

Lua �e uma linguagem de extens�ao projetada para ser usada como linguagem de con�gura�c�ao em
qualquer programa que precise de uma� Este documento descreve a vers�ao ��� da linguagem de
programa�c�ao Lua e a Interface de Programa�c�ao �API� que permite a intera�c�ao entre programas
Lua e programas C hospedeiros� O documento tamb�em apresenta alguns exemplos de uso das
principais caracter�	sticas do sistema�

� Introduction

Lua is an extension programming language designed to support general procedural programming
features with data description facilities� It is intended to be used as a con�guration language for
any program that needs one� Lua has been designed and implemented by W� Celes� L� H� de
Figueiredo and R� Ierusalimschy�

Lua is implemented as a library� written in C� Being an extension language� Lua has no notion of
a �main� program� it only works embedded in a host client� called the embedding program� This host
program can invoke functions to execute a piece of code in Lua� can write and read Lua variables�
and can register C functions to be called by Lua code� Through the use of C functions� Lua can be
augmented to cope with rather di�erent domains� thus creating customized programming languages
sharing a syntactical framework�

Lua is free�distribution software� and provided as usual with no guarantees� The implementation
described in this manual is available at the following URL�s�

http���www�inf�puc�rio�br��roberto�lua�html

ftp���ftp�icad�puc�rio�br�pub�lua�lua�tar�gz

	

� Environment and Chunks

All statements in Lua are executed in a global environment� This environment� which keeps all global
variables and functions� is initialized at the beginning of the embedding program and persists until
its end�

The global environment can be manipulated by Lua code or by the embedding program� which
can read and write global variables using functions in the library that implements Lua�

Global variables do not need declaration� Any variable is assumed to be global unless explicitly
declared local
see Section ������ Before the �rst assignment� the value of a global variable is nil�

The unit of execution of Lua is called a chunk� The syntax� for chunks is�

chunk � fstatement j functiong �ret �

A chunk may contain statements and function de�nitions� and may be in a �le or in a string inside
the host program� A chunk may optionally ends with a return statement
see Section ������ When
a chunk is executed� �rst all its functions and statements are compiled� then the statements are
executed in sequential order� All modi�cations a chunk e�ects on the global environment persist
after its end� Those include modi�cations to global variables and de�nitions of new functions��

Chunks may be pre�compiled� see program luac for details� Text �les with chunks and their
binary pre�compiled forms are interchangeable� Lua automatically detects the �le type and acts
accordingly�

� Types

Lua is a dynamically typed language� Variables do not have types� only values do� All values carry
their own type� Therefore� there are no type de�nitions in the language�

There are seven basic types in Lua� nil� number� string� function� CFunction� userdata� and
table� Nil is the type of the value nil� whose main property is to be di�erent from any other value�
Number represents real
�oating point numbers� while string has the usual meaning�

Functions are considered �rst�class values in Lua� This means that functions can be stored
in variables� passed as arguments to other functions and returned as results� When a function is
de�ned in Lua� its body is compiled and stored in a given variable� Lua can call
and manipulate
functions written in Lua and functions written in C� the latter have type CFunction�

The type userdata is provided to allow arbitrary C pointers to be stored in Lua variables� It
corresponds to void� and has no pre�de�ned operations in Lua� besides assignment and equality
test� However� by using fallbacks� the programmer may de�ne operations for userdata values� see
Section ����

The type table implements associative arrays� that is� arrays that can be indexed not only with
numbers� but with any value
except nil� Therefore� this type may be used not only to represent
ordinary arrays� but also symbol tables� sets� records� etc� To represent records� Lua uses the �eld
name as an index� The language supports this representation by providing a�name as syntactic
sugar for a��name��� Tables may also carry methods� Because functions are �rst class values�
table �elds may contain functions� The form t�f	x
 is syntactic sugar for t�f	t�x
� which calls
the method f from the table t passing itself as the �rst parameter�

It is important to notice that tables are objects� and not values� Variables cannot contain tables�
only references to them� Assignment� parameter passing and returns always manipulate references

�As usual� fag means � or more a�s� �a� means an optional a and fag� means one or more a�s�
�Actually� a function de�nition is an assignment to a global variable� see Section ��

�

to tables� and do not imply any kind of copy� Moreover� tables must be explicitly created before
used
see Section ������

� The Language

This section describes the lexis� the syntax and the semantics of Lua�

��� Lexical Conventions

Lua is a case sensitive language� Identi�ers can be any string of letters� digits� and underscores�
not beginning with a digit� The following words are reserved� and cannot be used as identi�ers�

and do else elseif

end function if local

nil not or repeat

return then until while

The following strings denote other tokens�

�� � �� � �� � �� � � � �

� 	
 � � � � � � �

Literal strings can be delimited by matching single or double quotes� and can contain the
C�like escape sequences ��n�� ��t� and ��r�� Literal strings can also be delimited by matching
�� ��� ��� Literals in this bracketed form may run for several lines� may contain nested �� ��� ��

pairs� and do not interpret escape sequences�
Comments start anywhere outside a string with a double hyphen
�� and run until the end of

the line� Moreover� if the �rst line of a chunk �le starts with �� this line is skipped��
Numerical constants may be written with an optional decimal part� and an optional decimal

exponent� Examples of valid numerical constants are�

� ��� ��� ����e�� ���e��

��� Coercion

Lua provides some automatic conversions� Any arithmetic operation applied to a string tries to
convert that string to a number� following the usual rules� Conversely� whenever a number is used
when a string is expected� that number is converted to a string� according to the following rule� if
the number is an integer� it is written without exponent or decimal point� otherwise� it is formatted
following the �g conversion speci�cation of the printf function in the standard C library�

��� Adjustment

Functions in Lua can return many values� Because there are no type declarations� the system does
not know how many values a function will return� or how many parameters it needs� Therefore�
sometimes� a list of values must be adjusted � at run time� to a given length� If there are more values
than are needed� then the last values are thrown away� If there are more needs than values� then
the list is extended with as many nil�s as needed� Adjustment occurs in multiple assignment and
function calls�

�This facility allows the use of Lua as a script interpreter in Unix systems�

�

��� Statements

Lua supports an almost conventional set of statements� The conventional commands include as�
signment� control structures and procedure calls� Non�conventional commands include table con�
structors
Section ������ and local variable declarations
Section ������

����� Blocks

A block is a list of statements� which is executed sequentially� Any statement can be optionally
followed by a semicolon�

block � fstat scg �ret �
sc � �����

For syntactic reasons� a return statement can only be written as the last statement of a block�
This restriction also avoids some �statement not reached� errors�

����� Assignment

The language allows multiple assignment� Therefore� the syntax de�nes a list of variables on the
left side� and a list of expressions on the right side� Both lists have their elements separated by
commas�

stat � varlist� ��� explist�
varlist� � var f��� varg

This statement �rst evaluates all values on the right side and eventual indices on the left side� and
then makes the assignments� Therefore� it can be used to exchange two values� as in

x� y � y� x

Before the assignment� the list of values is adjusted to the length of the list of variables
see
Section ����

A single name can denote a global or a local variable� or a formal parameter�

var � name

Square brackets are used to index a table�

var � var ��� exp� ���

If var results in a table value� the �eld indexed by the expression value gets the assigned value�
Otherwise� the fallback settable is called� with three parameters� the value of var� the value of
expression� and the value being assigned to it� see Section ����

The syntax var�NAME is just syntactic sugar for var��NAME���

var � var ��� name

����� Control Structures

The condition expression of a control structure can return any value� All values di�erent from nil

are considered true� nil is considered false� if�s� while�s and repeat�s have the usual meaning�

stat � while exp� do block end

j repeat block until exp�

j if exp� then block felseif g �else block � end
elseif � elseif exp� then block

�

A return is used to return values from a function or a chunk� Because they may return more
than one value� the syntax for a return statement is�

ret � return explist �sc�

����� Function Calls as Statements

Because of possible side�e�ects� function calls can be executed as statements�

stat � functioncall

Eventual returned values are thrown away� Function calls are explained in Section ������

����� Local Declarations

Local variables can be declared anywhere inside a block� Their scope begins after the declaration
and lasts until the end of the block� The declaration may include an initial assignment�

stat � local declist �init �
declist � name f��� nameg

init � ��� explist�

If present� an initial assignment has the same semantics of a multiple assignment� Otherwise� all
variables are initialized with nil�

��� Expressions

����� Simple Expressions

Simple expressions are�

exp � �
� exp ��
exp � nil

exp � �number�
exp � �literal�
exp � var

Numbers
numerical constants and string literals are explained in Section ��	� Variables are
explained in Section ������

����� Arithmetic Operators

Lua supports the usual arithmetic operators� These operators are the binary �� �� �� � and �

exponentiation� and the unary �� If the operands are numbers� or strings that can be converted
to numbers� according to the rules given in Section ���� then all operations but exponentiation have
the usual meaning� Otherwise� the fallback �arith� is called
see Section ���� An exponentiation
always calls this fallback� The standard mathematical library rede�nes this fallback� giving the
expected meaning to exponentiation
see Section ����

����� Relational Operators

Lua provides the following relational operators�

�

 � � �� �� ��

All these return nil as false and a value di�erent from nil
actually the number 	 as true�
Equality �rst compares the types of its operands� If they are di�erent� then the result is nil�

Otherwise� their values are compared� Numbers and strings are compared in the usual way� Tables�
CFunctions� and functions are compared by reference� that is� two tables are considered equal only
if they are the same table� The operator �� is exactly the negation of equality
���

The other operators work as follows� If both arguments are numbers� then they are compared
as such� Otherwise� if both arguments can be converted to strings� their values are compared using
lexicographical order� Otherwise� the �order� fallback is called
see Section ����

����� Logical Operators

Like control structures� all logical operators consider nil as false and anything else as true� The
logical operators are�

and or not

The operator and returns nil if its �rst argument is nil� otherwise it returns its second argument�
The operator or returns its �rst argument if it is di�erent from nil� otherwise it returns its second
argument� Both and and or use short�cut evaluation� that is� the second operand is evaluated only
if necessary�

����� Concatenation

Lua o�ers a string concatenation operator� denoted by ����� If operands are strings or numbers�
then they are converted to strings according to the rules in Section ���� Otherwise� the fallback
�concat� is called
see Section ����

����� Precedence

Operator precedence follows the table below� from the lower to the higher priority�

and or

 � � �� �� ��

��

� �

� �

not � 	unary

�

All binary operators are left associative� except for �
exponentiation� which is right associative�

����� Table Constructors

Table constructors are expressions that create tables� every time a constructor is evaluated� a new
table is created� Constructors can be used to create empty tables� or to create a table and initialize
some �elds�

The general syntax for constructors is�

�

tableconstructor � �f� �eldlist �g�
�eldlist � l�eldlist j �eldlist j l�eldlist ��� �eldlist

l�eldlist � �l�eldlist� �
�eldlist � ��eldlist� �

The form l�eldlist� is used to initialize lists�

l�eldlist� � exp f��� expg �����

The expressions in the list are assigned to consecutive numerical indexes� starting with 	� For
example�

a � ��v��� �v��� ���

is roughly equivalent to�

temp � ��

temp��� � �v��

temp��� � �v��

temp��� � ��

a � temp

The next form initializes named �elds in a table�

�eldlist� � �eld f��� �eldg �����
�eld � name ��� exp

For example�

a � �x � �� y � ��

is roughly equivalent to�

temp � ��

temp�x � � �� or temp��x�� � �

temp�y � � �� or temp��y�� � �

a � temp

����� Function Calls

A function call has the following syntax�

functioncall � var realParams

Here� var can be any variable
global� local� indexed� etc� If its value has type function or
CFunction� then this function is called� Otherwise� the �function� fallback is called� having as �rst
parameter the value of var� and then the original call parameters�

The form�

functioncall � var ��� name realParams

can be used to call �methods�� A call var�name	���
 is syntactic sugar for

var�name	var� ���

�

except that var is evaluated only once�

realParams � �
� �explist� � ��
realParams � tableconstructor

explist� � exp� f��� exp�g

All argument expressions are evaluated before the call� then the list of arguments is adjusted to
the length of the list of parameters
see Section ���� �nally� this list is assigned to the formal
parameters� A call of the form f����� is syntactic sugar for f	�����
� that is� the parameter list
is a single new table�

Because a function can return any number of results
see Section ������ the number of results
must be adjusted before used� If the function is called as a statement
see Section ������ its return
list is adjusted to �� If the function is called in a place that needs a single value
syntactically
denoted by the non�terminal exp�� then its return list is adjusted to 	� If the function is called
in a place that can hold many values
syntactically denoted by the non�terminal exp� then no
adjustment is made�

��� Function De�nitions

Functions in Lua can be de�ned anywhere in the global level of a chunk� The syntax for function
de�nition is�

function � function var �
� �parlist� � �� block end

When Lua pre�compiles a chunk� all its function bodies are pre�compiled� too� Then� when Lua
�executes� the function de�nition� its body is stored� with type function� into the variable var�

Parameters act as local variables� initialized with the argument values�

parlist� � name f��� nameg

Results are returned using the return statement
see Section ������ If control reaches the end
of a function without a return instruction� then the function returns with no results�

There is a special syntax for de�ning methods� that is� functions that have an extra parameter
self�

function � function var ��� name �
� �parlist� � �� block end

Thus� a declaration like

function v�f 	���

���

end

is equivalent to

function v�f 	self� ���

���

end

that is� the function gets an extra formal parameter called self� Notice that the variable v must
have been previously initialized with a table value�

�

��� Fallbacks

Lua provides a powerful mechanism to extend its semantics� called fallbacks� A fallback is a pro�
grammer de�ned function that is called whenever Lua does not know how to proceed�

Lua supports the following fallbacks� identi�ed by the given strings�

	arith
� called when an arithmetic operation is applied to non numerical operands� or when the
binary � operation is called� It receives three arguments� the two operands
the second one
is nil when the operation is unary minus and one of the following strings describing the
o�ended operator�

add sub mul div pow unm

Its return value is the �nal result of the arithmetic operation� The default handler issues an
error�

	order
� called when an order comparison is applied to non numerical or non string operands� It
receives three arguments� the two operands and one of the following strings describing the
o�ended operator�

lt gt le ge

Its return value is the �nal result of the comparison operation� The default handler issues an
error�

	concat
� called when a concatenation is applied to non string operands� It receives the two
operands as arguments� Its return value is the �nal result of the concatenation operation�
The default handler issues an error�

	index
� called when Lua tries to retrieve the value of an index not present in a table� It receives
as arguments the table and the index� Its return value is the �nal result of the indexing
operation� The default handler returns nil�

	getglobal
� called when Lua tries to retrieve the value of a global variable which has a nil value

or which has not been initialized� It receives as argument the name of the variable� Its
return value is the �nal result of the expression� The default handler returns nil�

	gettable
� called when Lua tries to index a non table value� It receives as arguments the non
table value and the index� Its return value is the �nal result of the indexing operation� The
default handler issues an error�

	settable
� called when Lua tries to assign indexed a non table value� It receives as arguments
the non table value� the index� and the assigned value� The default handler issues an error�

	function
� called when Lua tries to call a non function value� It receives as arguments the non
function value and the arguments given in the original call� Its return values are the �nal
results of the call operation� The default handler issues an error�

	gc
� called during garbage collection� It receives as argument the table being collected� After
each run of the collector this function is called with argument nil� Because this function
operates during garbage collection� it must be used with great care� and programmers should
avoid the creation of new objects
tables or strings in this function� The default handler
does nothing�

�

	error
� called when an error occurs� It receives as argument a string describing the error� The
default handler prints the message on the standard error output�

The function setfallback is used to change a fallback handler� Its �rst argument is the name
of a fallback condition� and the second argument is the new function to be called� It returns the
old handler function for the given fallback�

Section ��� shows an example of the use of fallbacks�

��	 Error Handling

Because Lua is an extension language� all Lua actions start from C code calling a function from
the Lua library� Whenever an error occurs during Lua compilation or execution� an �error�
fallback function is called� and then the corresponding function from the library
lua�dofile�
lua�dostring� lua�call� or lua�callfunction is terminated returning an error condition�

The only argument to the �error� fallback function is a string describing the error� The standard
I�O library rede�nes this fallback� using the debug facilities
see Section �� in order to print some
extra information� like the call stack� For more information about an error� the Lua program can
include the compilation pragma debug� This pragma must be written in a line by itself� When
an error occurs in a program compiled with this option� the error routine is able to print also the
lines where the calls
and the error were made� If needed� it is possible to change the �error�
fallback handler
see Section ����

Lua code can explicitly generate an error by calling the built�in function error
see Section ��	�

� The Application Program Interface

This section describes the API for Lua� that is� the set of C functions available to the host program
to communicate with the library� The API functions can be classi�ed in the following categories�

	� executing Lua code�

�� converting values between C and Lua�

�� manipulating
reading and writing Lua objects�

�� calling Lua functions�

�� C functions to be called by Lua�

�� references to Lua Objects�

All API functions are declared in the header �le lua�h�

��� Executing Lua Code

A host program can execute Lua chunks written in a �le or in a string� using the following functions�

int lua�dofile 	char �filename
�

int lua�dostring 	char �string
�

	�

Both functions return an error code� �� in case of success� non zero� in case of errors� More speci��
cally� lua�dofile returns � if for any reason it could not open the �le� The function lua�dofile�
if called with argument NULL
�� executes the stdin stream� Function lua�dofile is also able to
execute pre�compiled chunks� It automatically detects whether the �le is text or binary� and loads
it accordingly
see program luac�

��� Converting Values between C and Lua

Because Lua has no static type system� all values passed between Lua and C have type lua�Object�
which works like an abstract type in C that can hold any Lua value� Values of type lua�Object have
no meaning outside Lua� for instance� the comparisson of two lua�Object�s is of no signi�cance�

Because Lua has automatic memory management and garbage collection� a lua�Object has a
limited scope� and is only valid inside the block where it was created� A C function called from
Lua is a block� and its parameters are valid only until its end� A good programming practice is to
convert Lua objects to C values as soon as they are available� and never to store lua�Objects in
C global variables�

When C code calls Lua repeatedly� as in a loop� objects returned by these calls accumulate� and
may create a memory problem� To avoid this� nested blocks can be de�ned with the functions�

void lua�beginblock 	void
�

void lua�endblock 	void
�

After the end of the block� all lua�Object�s created inside it are released�
To check the type of a lua�Object� the following function is available�

int lua�type 	lua�Object object
�

plus the following macros and functions�

int lua�isnil 	lua�Object object
�

int lua�isnumber 	lua�Object object
�

int lua�isstring 	lua�Object object
�

int lua�istable 	lua�Object object
�

int lua�isfunction 	lua�Object object
�

int lua�iscfunction 	lua�Object object
�

int lua�isuserdata 	lua�Object object
�

All macros return 	 if the object is compatible with the given type� and � otherwise� The function
lua�isnumber accepts numbers and numerical strings� lua�isstring accepts strings and numbers

see Section ���� and lua�isfunction accepts Lua and C functions� The function lua�type can
be used to distinguish between di�erent kinds of user data�

To translate a value from type lua�Object to a speci�c C type� the programmer can use�

double lua�getnumber 	lua�Object object
�

char �lua�getstring 	lua�Object object
�

lua�CFunction lua�getcfunction 	lua�Object object
�

void �lua�getuserdata 	lua�Object object
�

lua�getnumber converts a lua�Object to a �oat� This lua�Object must be a number or a string
convertible to number
see Section ���� otherwise� the function returns ��

		

lua�getstring converts a lua�Object to a string
char �� This lua�Objectmust be a string
or a number� otherwise� the function returns �
the null pointer� This function does not create a
new string� but returns a pointer to a string inside the Lua environment� Because Lua has garbage
collection� there is no guarantee that such pointer will be valid after the block ends�

lua�getcfunction converts a lua�Object to a C function� This lua�Object must have type
CFunction� otherwise� the function returns �
the null pointer� The type lua�CFunction is ex�
plained in Section ����

lua�getuserdata converts a lua�Object to void�� This lua�Objectmust have type userdata�
otherwise� the function returns �
the null pointer�

The reverse process� that is� passing a speci�c C value to Lua� is done by using the following
functions�

void lua�pushnumber 	double n
�

void lua�pushstring 	char �s
�

void lua�pushcfunction 	lua�CFunction f
�

void lua�pushusertag 	void �u� int tag
�

plus the macro�

void lua�pushuserdata 	void �u
�

All of them receive a C value� convert it to a corresponding lua�Object� and leave the result on
the top of the Lua stack� where it can be assigned to a Lua variable� passed as parameter to a Lua
function� etc�

User data can have di�erent tags� whose semantics are de�ned by the host program� Any
positive integer can be used to tag a user datum� When a user datum is retrieved� the function
lua�type can be used to get its tag�

To complete the set� the value nil or a lua�Object can also be pushed onto the stack� with�

void lua�pushnil 	void
�

void lua�pushobject 	lua�Object object
�

��� Manipulating Lua Objects

To read the value of any global Lua variable� one uses the function�

lua�Object lua�getglobal 	char �varname
�

As in Lua� if the value of the global is nil� then the �getglobal� fallback is called�
To store a value previously pushed onto the stack in a global variable� there is the function�

void lua�storeglobal 	char �varname
�

Tables can also be manipulated via the API� The function

lua�Object lua�getsubscript 	void
�

expects on the stack a table and an index� and returns the contents of the table at that index� As
in Lua� if the �rst object is not a table� or the index is not present in the table� the corresponding
fallback is called�

To store a value in an index� the program must push onto the stack the table� the index� and
the value� and then call the function�

	�

void lua�storesubscript 	void
�

Again� the corresponding fallback is called if needed�
Finally� the function

lua�Object lua�createtable 	void
�

creates and returns a new table�
Please Notice� Most functions from the Lua library receive parameters through Lua�s stack�

Because other functions also use this stack� it is important that these parameters be pushed just
before the corresponding call� without intermediate calls to the Lua library� For instance� suppose
the user wants the value of a�i�� A simplistic solution would be�

�� Warning� WRONG CODE ��

lua�Object result�

lua�pushobject	lua�getglobal	�a�

� �� push table ��

lua�pushobject	lua�getglobal	�i�

� �� push index ��

result � lua�getsubscript	
�

However� the call lua�getglobal	�i�
 modi�es the stack� and invalidates the previous pushed
value� A correct solution could be�

lua�Object result�

lua�Object index � lua�getglobal	�i�
�

lua�pushobject	lua�getglobal	�a�

� �� push table ��

lua�pushobject	index
� �� push index ��

result � lua�getsubscript	
�

The functions lua�getnumber� lua�getstring� lua�getuserdata� and lua�getcfunction� plus
the family lua�is�� are safe to be called without modifying the stack�

��� Calling Lua Functions

Functions de�ned in Lua by a chunk executed with dofile or dostring can be called from the
host program� This is done using the following protocol� �rst� the arguments to the function are
pushed onto the Lua stack
see Section ���� in direct order� i�e�� the �rst argument is pushed �rst�
Again� it is important to emphasize that� during this phase� no other Lua function can be called�

Then� the function is called using

int lua�call 	char �functionname
�

or

int lua�callfunction 	lua�Object function
�

Both functions return an error code� �� in case of success� non zero� in case of errors� Finally� the
returned values
a Lua function may return many values can be retrieved with the macro

lua�Object lua�getresult 	int number
�

where number is the order of the result� starting with 	� When called with a number larger than
the actual number of results� this function returns LUA�NOOBJECT�

Two special Lua functions have exclusive interfaces� error and setfallback� A C function
can generate a Lua error calling the function

	�

void lua�error 	char �message
�

This function never returns� If the C function has been called from Lua� the corresponding Lua
execution terminates� as if an error had occurred inside Lua code� Otherwise� the whole program
terminates�

Fallbacks can be changed with�

lua�Object lua�setfallback 	char �name� lua�CFunction fallback
�

The �rst parameter is the fallback name� and the second a CFunction to be used as the new fallback�
This function returns a lua�Object� which is the old fallback value� or nil on fail
invalid fallback
name� This old value can be used for chaining fallbacks�

An example of C code calling a Lua function is shown in Section ��	��

��� C Functions

To register a C function to Lua� there is the following macro�

�define lua�register	n�f
 	lua�pushcfunction	f
� lua�storeglobal	n

�� char �n� ��

�� lua�CFunction f� ��

which receives the name the function will have in Lua� and a pointer to the function� This pointer
must have type lua�CFunction� which is de�ned as

typedef void 	�lua�CFunction
 	void
�

that is� a pointer to a function with no parameters and no results�
In order to communicate properly with Lua� a C function must follow a protocol� which de�nes

the way parameters and results are passed�
To access its arguments� a C function calls�

lua�Object lua�getparam 	int number
�

where number starts with 	 to get the �rst argument� When called with a number larger than the
actual number of arguments� this function returns LUA�NOOBJECT� In this way� it is possible to write
functions that work with a variable number of parameters�

To return values� a C function just pushes them onto the stack� in direct order
see Section ����
Like a Lua function� a C function called by Lua can also return many results�

Section ��� presents an example of a CFunction�

��� References to Lua Objects

As noted in Section ���� lua�Objects are volatile� If the C code needs to keep a lua�Object outside
block boundaries� it must create a reference to the object� The routines to manipulate references
are the following�

int lua�ref 	int lock
�

lua�Object lua�getref 	int ref
�

void lua�pushref 	int ref
�

void lua�unref 	int ref
�

	�

The function lua�ref creates a reference to the object that is on the top of the stack� and returns
this reference� If lock is true� the object is locked� that means the object will not be garbage
collected� Notice that an unlocked reference may be garbage collected� Whenever the referenced
object is needed� a call to lua�getref returns a handle to it� whereas lua�pushref pushes the
object on the stack� If the object has been collected� then lua�getref returns LUA�NOOBJECT� and
lua�pushobject issues an error�

When a reference is no longer needed� it can be freed with a call to lua�unref�

� Prede�ned Functions and Libraries

The set of prede�ned functions in Lua is small but powerful� Most of them provide features that
allows some degree of re�exivity in the language� Some of these features cannot be simulated with
the rest of the Language nor with the standard Lua API� Others are just convenient interfaces to
common API functions�

The libraries� on the other hand� provide useful routines that are implemented directly through
the standard API� Therefore� they are not necessary to the language� and are provided as separated
C modules� Currently there are three standard libraries�

� string manipulation�

� mathematical functions
sin� cos� etc�

� input and output
plus some system facilities�

In order to have access to these libraries� the host program must call the functions strlib�open�
mathlib�open� and iolib�open� declared in lualib�h�

��� Prede�ned Functions

� dofile 	filename

This function receives a �le name� opens it� and executes its contents as a Lua chunk� or as pre�
compiled chunks� When called without arguments� it executes the contents of the standard input

stdin� If there is any error executing the �le� it returns nil� Otherwise� it returns the values
returned by the chunk� or a non nil value if the chunk returns no values� It issues an error when
called with a non string argument�

� dostring 	string

This function executes a given string as a Lua chunk� If there is any error executing the string� it
returns nil� Otherwise� it returns the values returned by the chunk� or a non nil value if the chunk
returns no values�

� next 	table� index

This function allows a program to traverse all �elds of a table� Its �rst argument is a table and
its second argument is an index in this table� It returns the next index of the table and the value
associated with the index� When called with nil as its second argument� the function returns the
�rst index of the table
and its associated value� When called with the last index� or with nil in
an empty table� it returns nil�

	�

In Lua there is no declaration of �elds� semantically� there is no di�erence between a �eld not
present in a table or a �eld with value nil� Therefore� the function only considers �elds with non
nil values� The order the indices are enumerated is not speci�ed� even for numeric indices�

See Section ��� for an example of the use of this function�

� nextvar 	name

This function is similar to the function next� but iterates over the global variables� Its single
argument is the name of a global variable� or nil to get a �rst name� Similarly to next� it returns
the name of another variable and its value� or nil if there are no more variables� See Section ���
for an example of the use of this function�

� tostring 	e

This function receives an argument of any type and converts it to a string in a reasonable format�

� print 	e�� e�� ���

This function receives any number of arguments� and prints their values in a reasonable format�
Each value is printed in a new line� This function is not intended for formatted output� but as
a quick way to show a value� for instance for error messages or debugging� See Section ��� for
functions for formatted output�

� tonumber 	e

This function receives one argument� and tries to convert it to a number� If the argument is already a
number or a string convertible to a number
see Section ���� then it returns that number� otherwise�
it returns nil�

� type 	v

This function allows Lua to test the type of a value� It receives one argument� and returns its type�
coded as a string� The possible results of this function are �nil�
a string� not the value nil�
�number�� �string�� �table�� �function�
returned both for C functions and Lua functions�
and �userdata��

Besides this string� the function returns a second result� which is the tag of the value� This tag
can be used to distinguish between user data with di�erent tags� and between C functions and Lua
functions�

� assert 	v

This function issues an �assertion failed�� error when its argument is nil�

� error 	message

This function issues an error message and terminates the last called function from the library

lua�dofile� lua�dostring� � � � � It never returns�

	�

� setglobal 	name� value

This function assigns the given value to a global variable� The string name does not need to be
a syntactically valid variable name� Therefore� this function can set global variables with strange
names like !m v �� or ��� It returns the value of its second argument�

� getglobal 	name

This function retrieves the value of a global variable� The string name does not need to be a
syntactically valid variable name�

� setfallback 	fallbackname� newfallback

This function sets a new fallback function to the given fallback� It returns the old fallback function�

��� String Manipulation

This library provides generic functions for string manipulation� such as �nding and extracting sub�
strings and pattern matching� When indexing a string� the �rst character has position 	� See
Page 	� for an explanation about patterns� and Section ��� for some examples on string manipula�
tion in Lua�

� strfind 	str� pattern �� init �� plain��

This function looks for the �rst match of pattern in str� If it �nds one� it returns the indexes
on str where this occurence starts and ends� otherwise� it returns nil� If the pattern speci�es
captures� the captured strings are returned as extra results� A third optional numerical argument
speci�es where to start the search� its default value is 	� A value of 	 as a forth optional argument
turns o� the pattern matching facilities� so the function does a plain ��nd substring� operation�

� strlen 	s

Receives a string and returns its length�

� strsub 	s� i �� j�

Returns another string� which is a substring of s� starting at i and runing until j� If j is absent�
it is assumed to be equal to the length of s� In particular� the call strsub	s���j
 returns a pre�x
of s with length j� whereas the call strsub	s�i
 returns a su�x of s� starting at i�

� strlower 	s

Receives a string and returns a copy of that string with all upper case letters changed to lower case�
All other characters are left unchanged�

� strupper 	s

Receives a string and returns a copy of that string with all lower case letters changed to upper case�
All other characters are left unchanged�

	�

� strrep 	s� n

Returns a string which is the concatenation of n copies of the string s�

� ascii 	s �� i�

Returns the ascii code of the character s�i�� If i is absent� then it is assumed to be 	�

� format 	formatstring� e�� e�� ���

This function returns a formated version of its variable number of arguments following the descrip�
tion given in its �rst argument
which must be a string� The format string follows the same rules
as the printf family of standard C functions� The only di�erences are that the options�modi�ers
�� l� L� n� p� and h are not supported� and there is an extra option� q� This option formats a
string in a form suitable to be safely read back by the Lua interpreter� that is� the string is written
between double quotes� and all double quotes� returns and backslashes in the string are correctly
escaped when written� For instance� the call

format	��q�� �a string with �quotes� and �n new line�

will produce the string�

�a string with ��quotes�� and �

new line�

The options c� d� E� e� f� g i� o� u� X� and x all expect a number as argument� whereas q and s

expect a string�

� gsub 	s� pat� repl �� n�

Returns a copy of s� where all occurrences of the pattern pat have been replaced by a replace�
ment string speci�ed by repl� This function also returns� as a second value� the total number of
substitutions made�

If repl is a string� its value is used for replacement� Any sequence in repl of the form �n with
n between 	 and � stands for the value of the n�th captured substring�

If repl is a function� this function is called every time a match occurs� with all captured
substrings as parameters� If the value returned by this function is a string� it is used as the
replacement string� otherwise� the replacement string is the empty string�

An optional parameter n limits the maximum number of substitutions to occur� For instance�
when n is 	 only the �rst occurrence of pat is replaced�

As an example� in the following expression each occurrence of the form name calls the function
getenv� passing name as argument
because only this part of the pattern is captured� The value
returned by getenv will replace the pattern� Therefore� the whole expression�

gsub	�home � HOME � user � USER �� � 	�w�w�
 �� getenv

may return the string�

home � �home�roberto� user � roberto

	�

Patterns

Character Class� a character class is used to represent a set of characters� The following
combinations are allowed in describing a character class�

x
where x is any character not in the list 	
����" � represents the character x itself�

� � represents all characters�

�a � represents all letters�

�A � represents all non letter characters�

�d � represents all digits�

�D � represents all non digits�

�l � represents all lower case letters�

�L � represents all non lower case letter characters�

�s � represents all space characters�

�S � represents all non space characters�

�u � represents all upper case letters�

�U � represents all non upper case letter characters�

�w � represents all alphanumeric characters�

�W � represents all non alphanumeric characters�

�x
where x is any non alphanumeric character � represents the character x�

�char�set� � Represents the class which is the union of all characters in char�set� To include a �
in char�set� it must be the �rst character� A range of characters may be speci�ed by separating
the end characters of the range with a �� e�g�� A�Z speci�es the upper case characters� If �
appears as the �rst or last character of char�set� then it represents itself� All classes �x

described above can also be used as components in a char�set� All other characters in char�
set represent themselves�

��char�set� � represents the complement of char�set� where char�set is interpreted as above�

Pattern Item� a pattern item may be a single character class� or a character class followed by
� or by "� A single character class matches any single character in the class� A character class
followed by � matches � or more repetitions of characters in the class� A character class followed
by " matches � or one occurrence of a character in the class� A pattern item may also has the form
�n� for n between 	 and �� such item matches a sub�string equal to the n�th captured string�

	�

Pattern� a pattern is a sequence of pattern items� Any repetition item
� inside a pattern will
always match the longest possible sequence� A � at the beginning of a pattern anchors the match
at the beginning of the subject string� A at the end of a pattern anchors the match at the end
of the subject string�

A pattern may contain sub�patterns enclosed in parentheses� that describe captures� When a
match succeeds� the sub�strings of the subject string that match captures are captured for future
use� Captures are numbered according to their left parentheses�

��� Mathematical Functions

This library is an interface to some functions of the standard C math library� Moreover� it registers
a fallback for the binary operator � which� when applied to numbers x�y� returns xy�

The library provides the following functions�

abs acos asin atan atan� ceil cos floor log log��

max min mod sin sqrt tan random randomseed

Most of them are only interfaces to the homonymous functions in the C library� except that� for
the trigonometric functions� all angles are expressed in degrees� not radians�

The function max returns the maximum value of its numeric arguments� Similarly� min computes
the minimum� Both can be used with an unlimited number of arguments�

The functions random and randomseed are interfaces to the simple random generator functions
rand and srand� provided by ANSI C� The function random returns pseudo�random numbers in
the range ��� 	�

��� I
O Facilities

All I�O operations in Lua are done over two current �les� one for reading and one for writing�
Initially� the current input �le is stdin� and the current output �le is stdout�

Unless otherwise stated� all I�O functions return nil on failure and some value di�erent from
nil on success�

� readfrom 	filename

This function may be called in three ways� When called with a �le name� it opens the named �le�
sets it as the current input �le� and returns a handle to the �le
this handle is a user data containing
the �le stream FILE �� When called with a �le handle� returned by a previous call� it restores
the �le as the current input� When called without parameters� it closes the current input �le� and
restores stdin as the current input �le�

If this function fails� it returns nil� plus a string describing the error�
System dependent� if filename starts with a #� then a piped input is open� via function popen�

� writeto 	filename

This function may be called in three ways� When called with a �le name� it opens the named
�le� sets it as the current output �le� and returns a handle to the �le
this handle is a user data
containing the �le stream FILE �� Notice that� if the �le already exists� it will be completely erased

with this operation� When called with a �le handle� returned by a previous call� it restores the �le

��

as the current output� When called without parameters� this function closes the current output
�le� and restores stdout as the current output �le�

If this function fails� it returns nil� plus a string describing the error�
System dependent� if filename starts with a #� then a piped output is open� via function popen�

� appendto 	filename

This function opens a �le named filename and sets it as the current output �le� It returns the
�le handle� or nil in case of error� Unlike the writeto operation� this function does not erase any
previous content of the �le� If this function fails� it returns nil� plus a string describing the error�

Notice that function writeto is available to close a �le�

� remove 	filename

This function deletes the �le with the given name� If this function fails� it returns nil� plus a string
describing the error�

� rename 	name�� name�

This function renames �le name� to name�� If this function fails� it returns nil� plus a string
describing the error�

� tmpname 	

This function returns a string with a �le name that can safely be used for a temporary �le�

� read 	�readpattern�

This function reads the current input according to a read pattern� that speci�es how much to read�
characters are read from the current input �le until the read pattern fails or ends� The function
read returns a string with the characters read� or nil if the read pattern fails and the result string
would be empty� When called without parameters� it uses a default pattern that reads the next
line
see below�

A read pattern is a sequence of read pattern items� An item may be a single character class
or a character class followed by " or by �� A single character class reads the next character from
the input if it belongs to the class� otherwise it fails� A character class followed by " reads the
next character from the input if it belongs to the class� it never fails� A character class followed
by � reads until a character that does not belong to the class� or end of �le� since it can match a
sequence of zero characteres� it never fails��

A pattern item may contain sub�patterns enclosed in curly brackets� that describe skips� Char�
acters matching a skip are read� but are not included in the resulting string�

Following are some examples of read patterns and their meanings�

� ��� returns the next character� or nil on end of �le�

� ���� reads the whole �le�

�Notice that this behaviour is di	erent from regular pattern matching� where a � expands to the maximum length
such that the rest of the pattern does not fail�

�	

� ����n����n�� returns the next line
skipping the end of line� or nil on end of �le� This is
the default pattern�

� ���s���S�S�� returns the next word
maximal sequence of non white�space characters� or
nil on end of �le�

� ���s������"�d�d�� returns the next integer or nil if the next characters do not conform to
an integer format�

� write 	value�� ���

This function writes the value of each of its arguments to the current output �le� The arguments
must be strings or numbers� If this function fails� it returns nil� plus a string describing the error�

� date 	�format�

This function returns a string containing date and time formatted according to the given string
format� following the same rules of the ANSI C function strftime� When called without argu�
ments� it returns a reasonable date and time representation�

� exit 	�code�

This function calls the C function exit� with an optional code� to terminate the program�

� getenv 	varname

Returns the value of the environment variable varname� or nil if the variable is not de�ned�

� execute 	command

This function is equivalent to the C function system� It passes command to be executed by an
Operating System Shell� It returns an error code� which is implementation�de�ned�

� The Debugger Interface

Lua has no built�in debugger facilities� Instead� it o�ers a special interface� by means of functions
and hooks� which allows the construction of di�erent kinds of debuggers� pro�lers� and other tools
that need �inside information� from the interpreter� This interface is declared in the header �le
luadebug�h�

��� Stack and Function Information

The main function to get information about the interpreter stack is

lua�Function lua�stackedfunction 	int level
�

It returns a handle
lua�Function to the activation record of the function executing at a given
level� Level � is the current running function� while level n � 	 is the function that has called
level n� When called with a level greater than the stack depth� lua�stackedfunction returns
LUA�NOOBJECT�

��

The type lua�Function is just another name to lua�Object� Although� in this library� a
lua�Function can be used wherever a lua�Object is required� a parameter lua�Function accepts
only a handle returned by lua�stackedfunction�

Three other functions produce extra information about a function�

void lua�funcinfo 	lua�Object func� char ��filename� int �linedefined
�

int lua�currentline 	lua�Function func
�

char �lua�getobjname 	lua�Object o� char ��name
�

lua�funcinfo gives the �le name and the line where the given function has been de�ned� If the
�function� is in fact the main code of a chunk� then linedefined is �� If the function is a C
function� then linedefined is �	� and filename is �	C
��

The function lua�currentline gives the current line where a given function is executing� It
only works if the function has been pre�compiled with debug information
see Section ���� When
no line information is available� it returns �	�

Function lua�getobjname tries to �nd a reasonable name for a given function� Because func�
tions in Lua are �rst class values� they do not have a �xed name� Some functions may be the value of
many global variables� while others may be stored only in a table �eld� Function lua�getobjname

�rst checks whether the given function is a fallback� If so� it returns the string �fallback�� and
name is set to point to the fallback name� Otherwise� if the given function is the value of a global
variable� then lua�getobjname returns the string �global�� while name points to the variable name�
If the given function is neither a fallback nor a global variable� then lua�getobjname returns the
empty string� and name is set to NULL�

��� Manipulating Local Variables

The following functions allow the manipulation of the local variables of a given activation record�
They only work if the function has been pre�compiled with debug information
see Section ����

lua�Object lua�getlocal 	lua�Function func� int local�number� char ��name
�

int lua�setlocal 	lua�Function func� int local�number
�

The �rst one returns the value of a local variable� and sets name to point to the variable name�
local�number is an index for local variables� The �rst parameter has index 	� and so on� until
the last active local variable� When called with a local�number greater than the number of
active local variables� or if the activation record has no debug information� lua�getlocal returns
LUA�NOOBJECT�

The function lua�setlocal sets the local variable local�number to the value previously pushed
on the stack
see Section ���� If the function succeeds� then it returns 	� If local�number is greater
than the number of active local variables� or if the activation record has no debug information� then
this function fails and returns ��

��� Hooks

The Lua interpreter o�ers two hooks for debugging purposes�

typedef void 	�lua�CHFunction
 	lua�Function func� char �file� int line
�

extern lua�CHFunction lua�callhook�

typedef void 	�lua�LHFunction
 	int line
�

extern lua�LHFunction lua�linehook�

��

The �rst one is called whenever the interpreter enters or leaves a function� When entering a
function� its parameters are a handle to the function activation record� plus the �le and the line
where the function is de�ned
the same information which is provided by lua�funcinfo� when
leaving a function� func is LUA�NOOBJECT� file is �	return
�� and line is ��

The other hook is called every time the interpreter changes the line of code it is execut�
ing� Its only parameter is the line number
the same information which is provided by the call
lua�currentline	lua�stackedfunction	�

� This second hook is only called if the active func�
tion has been pre�compiled with debug information
see Section ����

A hook is disabled when its value is NULL
�� which is the initial value of both hooks�

� Some Examples

This section gives examples showing some features of Lua� It does not intend to cover the whole
language� but only to illustrate some interesting uses of the system�

	�� Data Structures

Tables are a strong unifying data constructor� They directly implement a multitude of data types�
like ordinary arrays� records� sets� bags� and lists�

Arrays need no explanations� In Lua� it is conventional to start indices from 	� but this is
only a convention� Arrays can be indexed by �� negative numbers� or any other value
except nil�
Records are also trivially implemented by the syntactic sugar a�x�

The best way to implement a set is to store its elements as indices of a table� The statement
s � �� creates an empty set s� The statement s�x� � � inserts the value of x into the set s� The
expression s�x� is true if and only if x belongs to s� Finally� the statement s�x� � nil removes x
from s�

Bags can be implemented similarly to sets� but using the value associated to an element as its
counter� So� to insert an element� the following code is enough�

if s�x� then s�x� � s�x��� else s�x� � � end

and to remove an element�

if s�x� then s�x� � s�x��� end

if s�x� �� � then s�x� � nil end

Lisp�like lists also have an easy implementation� The �cons� of two elements x and y can
be created with the code l � �car�x� cdr�y�� The expression l�car extracts the header� while
l�cdr extracts the tail� An alternative way is to create the list directly with l��x�y�� and then to
extract the header with l��� and the tail with l����

	�� The Functions next and nextvar

This example shows how to use the function next to iterate over the �elds of a table� Function
clone receives any table and returns a clone of it�

function clone 	t
 �� t is a table

local new�t � �� �� create a new table

local i� v � next	t� nil
 �� i is an index of t� v � t�i�

��

while i do

new�t�i� � v

i� v � next	t� i
 �� get next index

end

return new�t

end

The next example prints the names of all global variables in the system with non nil values�

function printGlobalVariables 	

local i� v � nextvar	nil

while i do

print	i

i� v � nextvar	i

end

end

	�� String Manipulation

The �rst example is a function to trim extra white�spaces at the beginning and end of a string�

function trim	s

local �� i � strfind	s� �� ��

local f� �� � strfind	s� � � �

return strsub	s� i��� f��

end

The second example shows a function that eliminates all spaces of a string�

function remove�blanks 	s

return gsub	s� ��s�s��� ��

end

	�� Variable number of arguments

Lua does not provide any explicit mechanism to deal with variable number of arguments in function
calls� However� one can use table constructors to simulate this mechanism� As an example� suppose
a function to concatenate all its arguments� It could be written like

function concat 	o

local i � �

local s � ��

while o�i� do

s � s �� o�i�

i � i��

end

return s

end

To call it� one uses a table constructor to join all arguments�

x � concat��hello �� �john�� � and �� �mary��

��

	�� Persistence

Because of its re�exive facilities� persistence in Lua can be achieved within the language� This
section shows some ways to store and retrieve values in Lua� using a text �le written in the language
itself as the storage media�

To store a single value with a name� the following code is enough�

function store 	name� value

write	format	��n�s ��� name

write�value	value

end

function write�value 	value

local t � type	value

if t �� �nil� then write	�nil�

elseif t �� �number� then write	value

elseif t �� �string� then write	value� �q�

end

end

In order to restore this value� a lua�dofile su�ces�
Storing tables is a little more complex� Assuming that the table is a tree� and that all indices

are identi�ers
that is� the tables are being used as records� then its value can be written directly
with table constructors� First� the function write�value is changed to

function write�value 	value

local t � type	value

if t �� �nil� then write	�nil�

elseif t �� �number� then write	value

elseif t �� �string� then write	value� �q�

elseif t �� �table� then write�record	value

end

end

The function write�record is�

function write�record	t

local i� v � next	t� nil

write	���
 �� starts constructor

while i do

store	i� v

write	�� �

i� v � next	t� i

end

write	���
 �� closes constructor

end

	�� Inheritance

The fallback for absent indices can be used to implement many kinds of inheritance in Lua� As an
example� the following code implements single inheritance�

��

function Index 	t�f

if f �� �parent� then �� to avoid loop

return OldIndex	t�f

end

local p � t�parent

if type	p
 �� �table� then

return p�f�

else

return OldIndex	t�f

end

end

OldIndex � setfallback	�index�� Index

Whenever Lua attempts to access an absent �eld in a table� it calls the fallback function Index� If
the table has a �eld parent with a table value� then Lua attempts to access the desired �eld in this
parent object� This process is repeated �upwards� until a value for the �eld is found or the object
has no parent� In the latter case� the previous fallback is called to supply a value for the �eld�

When better performance is needed� the same fallback may be implemented in C� as illustrated
in Figure 	� This code must be registered with�

lua�pushstring	�parent�
�

lockedParentName � lua�ref	�
�

lua�pushobject	lua�setfallback	�index�� Index

�

lockedOldIndex � lua�ref	�
�

Notice how the string �parent� is kept locked in Lua for optimal performance�

	�� Programming with Classes

There are many di�erent ways to do object�oriented programming in Lua� This section presents
one possible way to implement classes� using the inheritance mechanism presented above� Please

notice� the following examples only work with the index fallback rede�ned according to Section ��	�
As one could expect� a good way to represent a class is with a table� This table will contain all

instance methods of the class� plus optional default values for instance variables� An instance of a
class has its parent �eld pointing to the class� and so it �inherits� all methods�

For instance� a class Point can be described as in Figure �� Function create helps the creation
of new points� adding the parent �eld� Function move is an example of an instance method� Finally�
a subclass can be created as a new table� with the parent �eld pointing to its superclass� It is
interesting to notice how the use of self in method create allows this method to work properly
even when inherited by a subclass� As usual� a subclass may overwrite any inherited method with
its own version�

	�	 Modules

Here we explain one possible way to simulate modules in Lua� The main idea is to use a table to
store the module functions�

A module should be written as a separate chunk� starting with�

��

�include �lua�h�

int lockedParentName� �� lock index for the string �parent� ��

int lockedOldIndex� �� previous fallback function ��

void callOldFallback 	lua�Object table� lua�Object index

�

lua�Object oldIndex � lua�getref	lockedOldIndex
�

lua�pushobject	table
�

lua�pushobject	index
�

lua�callfunction	oldIndex
�

if 	lua�getresult	�
 $� LUA�NOOBJECT

lua�pushobject	lua�getresult	�

� �� return result ��

�

void Index 	void

�

lua�Object table � lua�getparam	�
�

lua�Object index � lua�getparam	�
�

lua�Object parent�

if 	lua�isstring	index
 %% strcmp	lua�getstring	index
� �parent�
 �� �

�

callOldFallback	table� index
�

return�

�

lua�pushobject	table
�

lua�pushref	lockedParentName
�

parent � lua�getsubscript	
�

if 	lua�istable	parent

�

lua�pushobject	parent
�

lua�pushobject	index
�

�� return result from getsubscript ��

lua�pushobject	lua�getsubscript	

�

�

else

callOldFallback	table� index
�

�

Figure 	� Inheritance in C�

��

Point � �x � �� y � ��

function Point�create 	o

o�parent � self

return o

end

function Point�move 	p

self�x � self�x � p�x

self�y � self�y � p�y

end

���

��

�� creating points

��

p� � Point�create�x � ��� y � ���

p� � Point�create�x � ��� �� y will be inherited until it is set

��

�� example of a method invocation

��

p��move	p�

Figure �� A Class Point�

��

function open 	mod

local n� f � next	mod� nil

while n do

setglobal	n� f

n� f � next	mod� n

end

end

Figure �� Opening a module�

if modulename then return end �� avoid loading twice the same module

modulename � �� �� create a table to represent the module

After that� functions can be directly de�ned with the syntax

function modulename�foo 	���

���

end

Any code that needs this module has only to execute dofile	�filename�
� where filename is
the �le where the module is written� After this� any function can be called with

modulename�foo	���

If a module function is going to be used many times� the program can give a local name to it�
Because functions are values� it is enough to write

localname � modulename�foo

Finally� a module may be opened� giving direct access to all its functions� as shown in the code in
Figure ��

	�� A CFunction

A CFunction to compute the maximum of a variable number of arguments is shown in Figure ��
After registered with

lua�register 	�max�� math�max
�

this function is available in Lua� as follows�

i � max	�� �� ��� ���
 �� i receives ��

	��� Calling Lua Functions

This example illustrates how a C function can call the Lua function remove�blanks presented in
Section ����

��

void math�max 	void

�

int i��� �� number of arguments ��

double d� dmax�

lua�Object o�

�� the function must get at least one argument ��

if 		o � lua�getparam	i��

 �� LUA�NOOBJECT

lua�error 	�too few arguments to function !max��
�

�� and this argument must be a number ��

if 	$lua�isnumber	o

lua�error 	�incorrect argument to function !max��
�

dmax � lua�getnumber 	o
�

�� loops until there is no more arguments ��

while 		o � lua�getparam	i��

 $� LUA�NOOBJECT

�

if 	$lua�isnumber	o

lua�error 	�incorrect argument to function !max��
�

d � lua�getnumber 	o
�

if 	d � dmax
 dmax � d�

�

�� push the result to be returned ��

lua�pushnumber 	dmax
�

�

Figure �� C function math max�

�	

void remove�blanks 	char �s

�

lua�pushstring	s
� �� prepare parameter ��

lua�call	�remove�blanks�
� �� call Lua function ��

strcpy	s� lua�getstring	lua�getresult	�

� �� copy result back to �s� ��

�

	 Lua Stand
alone

Although Lua has been designed as an extension language� the language can also be used as a
stand�alone interpreter� An implementation of such an interpreter� called simply lua� is provided
with the standard distribution� This program can be called with any sequence of the following
arguments�

�v prints version information�

� runs interactively� accepting commands from standard input until an EOF�

�e stat executes stat as a Lua chunk�

var�exp executes var�exp as a Lua chunk�

filename executes �le filename as a Lua chunk�

All arguments are handle in order� For instance� an invocation like

 lua � a�� prog�lua

will �rst interact with the user until an EOF� then will set a to 	� and �nally will run �le prog�lua�
Please notice that the interaction with the shell may lead to unintended results� For instance�

a call like

 lua a��name� prog�lua

will not set a to the string �name�� Instead� the quotes will be handled by the shell� lua will get
only a�name to run� and a will �nish with nil� Instead� one should write

 lua �a��name�� prog�lua

Acknowledgments

The authors would like to thank CENPES�PETROBR�AS which� jointly with TeCGraf� used exten�
sively early versions of this system and gave valuable comments� The authors would also like to
thank Carlos Henrique Levy� who found the name of the game� Lua means moon in Portuguese�

Incompatibilities with Previous Versions

Although great care has been taken to avoid incompatibilities with the previous public versions of
Lua� some di�erences had to be introduced� Here is a list of all these incompatibilities�

��

Incompatibilities with version ���

The whole I�O facilities have been rewritten� We strongly encourage programmers to addapt their
code to this new version� However� we are keeping the old version of the libraries in the distribution�
to allow a smooth transition� The incompatibilities between the new and the old libraries are�

� The format facility of function write has been supersed by function format� therefore this
facility has been dropped�

� Function read now uses read patterns to specify what to read� this is incompatible with the
old format options�

� Function strfind now accepts patterns� so it may have a di�erent behavior when the pattern
includes special characteres�

Incompatibilities with version ���

� Functions date and time
from iolib have been superseded by the new� more powerful
version of function date�

� Function append
from iolib now returns 	 whenever it succeeds� whether the �le is new
or not�

� Function int�str
from strlib has been superseded by new function format� with param�
eter ��c��

� The API lock mechanism has been superseded by the reference mechanism� However� lua�h
provides compatibility macros� so there is no need to change programs�

� The API function lua�pushliteral now is just a macro to lua�pushstring�

Incompatibilities with version ���

� The function type now returns the string �function� both for C and Lua functions� Because
Lua functions and C functions are compatible� this behavior is usually more useful� When
needed� the second result of function type may be used to distinguish between Lua and C
functions�

� A function de�nition only assigns the function value to the given variable at execution time�

Incompatibilities with version ���

� The equality test operator now is denoted by ��� instead of ��

� The syntax for table construction has been greatly simpli�ed� The old &	size
 has been sub�
stituted by ��� The list constructor
formerly &����� and the record constructor
formerly
&����� now are both coded like ������ When the construction involves a function call� like
in &func������ the new syntax does not use the &� More important� a construction function

must now explicitly return the constructed table�

� The function lua�call no longer has the parameter nparam�

��

� The function lua�pop is no longer available� since it could lead to strange behavior� In
particular� to access results returned from a Lua function� the new macro lua�getresult

should be used�

� The old functions lua�storefield and lua�storeindexed have been replaced by

int lua�storesubscript 	void
�

with the parameters explicitly pushed on the stack�

� The functionality of the function lua�errorfunction has been replaced by the fallback mech�
anism
see Section ����

� When calling a function from the Lua library� parameters passed through the stack must be
pushed just before the corresponding call� with no intermediate calls to Lua� Special care
should be taken with macros like lua�getindexed and lua�getfield�

��

Index

�� �
abs ��
acos ��
Adjustment �
and �
appendto �	
arguments �
arithmetic fallback �
arithmetic operators �
arrays �
ascii 	�
asin ��
assert 	�
Assignment �
associative arrays �
atan ��
atan� ��
basic types �
block �
C pointers �
captures ��
ceil ��
CFunction �
character class 	�
chunk �
clone ��
closing a �le �	
Coercion �
Comments �
concatenation fallback �
concatenation �
condition expression �
constructors �
cos ��
Data Structures ��
date ��
debug pragma 	�
do�le 	�
dostring 	�
error fallback 	�
error 	�
execute ��
exit ��
exponentiation �

Expressions �
fallbacks �
�oor ��
format 	�
function call �
Function De�nitions �
function fallback �
function �
functions in C ��
getenv ��
getglobal 	�
gettable fallback �
global environment �
Global variables �
gsub 	�
Identi�ers �
if�then�else �
index fallback �
index getglobal �
inheritance ��
Literal strings �
Local variables �
log	� ��
log ��
logical operators �
Lua Stand�alone ��
luac 		
luac �
lua call 	�
lua callfunction 	�
lua CFunction 	�
lua createtable 	�
lua do�le 	�
lua dostring 	�
lua error 	�
lua getcfunction 		
lua getglobal 	�
lua getnumber 		
lua getparam 	�
lua getref 	�
lua getresult 	�
lua getstring 		
lua getsubscript 	�
lua getuserdata 		

��

lua iscfunction 		
lua isfunction 		
lua isnil 		
lua isnumber 		
lua isstring 		
lua istable 		
lua isuserdata 		
LUA NOOBJECT 	�
lua Object 		
lua pushcfunction 	�
lua pushnil 	�
lua pushnumber 	�
lua pushobject 	�
lua pushref 	�
lua pushstring 	�
lua pushuserdata 	�
lua pushusertag 	�
lua ref 	�
lua register 	�
lua setfallback 	�
lua storeglobal 	�
lua storesubscript 	�
lua type 		
lua unref 	�
max ��
methods �
min ��
mod ��
Modules ��
multiple assignment �
next 	�
next ��
nextvar 	�
nextvar ��
nil �
not �
number �
Numerical constants �
Operator precedence �
or �
order fallback �
pattern item 	�
pattern ��
Persistence ��
piped input ��
piped output �	
popen ��

popen �	
pre�compilation �
prede�ned functions 	�
print 	�
Programming with Classes ��
random ��
randomseed ��
read pattern �	
read �	
readfrom ��
records �
reference 	�
re�exivity 	�
relational operators �
remove �	
rename �	
repeat�until �
reserved words �
return statement �
return �
self �
setfallback 	�
setfallback 	�
setglobal 	�
settable fallback �
short�cut evaluation �
Simple Expressions �
sin ��
skips �	
sqrt ��
statements �
str�nd 	�
string �
strlen 	�
strlower 	�
strrep 	�
strsub 	�
strupper 	�
table �
tag 	�
tan ��
tmpname �	
tokens �
tonumber 	�
tostring 	�
type 	�
Types �

��

userdata �
Variable number of arguments ��
version 	�	 ��
version ��	 ��
version ��� ��
version ��� ��
while�do �
write ��
writeto ��

��

Contents

� Introduction �

� Environment and Chunks �

� Types �

� The Language �

��	 Lexical Conventions �
��� Coercion �
��� Adjustment �
��� Statements �

����	 Blocks �
����� Assignment �
����� Control Structures �
����� Function Calls as Statements �
����� Local Declarations �

��� Expressions �
����	 Simple Expressions �
����� Arithmetic Operators �
����� Relational Operators �
����� Logical Operators �
����� Concatenation �
����� Precedence �
����� Table Constructors �
����� Function Calls �

��� Function De�nitions �
��� Fallbacks �
��� Error Handling � 	�

� The Application Program Interface ��

��	 Executing Lua Code � 	�
��� Converting Values between C and Lua � 		
��� Manipulating Lua Objects � 	�
��� Calling Lua Functions � 	�
��� C Functions � 	�
��� References to Lua Objects � 	�

� Predened Functions and Libraries ��

��	 Prede�ned Functions � 	�
��� String Manipulation � 	�
��� Mathematical Functions ��
��� I�O Facilities ��

��

� The Debugger Interface ��

��	 Stack and Function Information ��
��� Manipulating Local Variables ��
��� Hooks ��

� Some Examples ��

��	 Data Structures ��
��� The Functions next and nextvar ��
��� String Manipulation ��
��� Variable number of arguments ��
��� Persistence ��
��� Inheritance ��
��� Programming with Classes ��
��� Modules ��
��� A CFunction ��
��	� Calling Lua Functions ��

� Lua Stand�alone ��

��

